English

Contact us

نظر دهید

تماس با ما

فارسی

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

 

نظریه سی پی اچ بر اساس تعمیم سرعت نور از انرژی به ماده بنا شده است.

اخبار

آرشیو مقالات

 

سی پی اچ در ژورنالها

   

 

چرا زمان دارای یک جهت است؟

 

 

 

حدود یک قرن است که فیزیکدانان در مورد زمان با یک معما مواجه هستند. جرا زمان دارای یک جهت است؟

زمان می تواند به عقب برگردد و معادلات فیزیکی می تواند روی خواص آن کار کند. ممکن است محققان دانشگاه شیکاگو برای آن پاسخی داشته باشند: ما در یک جهانی زندگی می کنیم که آنتروپی آن در حال افزایش است. بجای یک مهبانگ رونده، و اینکه جهان برای همیشه در حال انبساط و سرد شدن است، یک نوسان کوچک در فضای تهی ممکن است به یک مهبانگ جدید منجر شود - و جهان هرگز به حالت تعادل نرسد.

 

با توجه به نظریه سی. پی. اچ. هنگامیکه یک سیاه چاله رشد بسیاری داشته باشد، بتدریج اسپین سی. پی. اچ. افزایش می یابد و به همان نسبت از سرعت انتقالی آنها کاسته می شود و سیاه چاله همه چیز حتی گرانش را می بلعد و به یک سیاه چاله مطلق تبدیل می شود.

هنگامیکه اسپین سی. پی. اچ. ها به مقدار ماکزیمم خود برسد، دیگر سی. پی. اچ. ها از نیروی خارجی تبعیت نمی کنند و سیاه چاله مطلق منفجر می شود. مهبانگ (بیگ بنگ ) ناشی از انفجار یک سیاه چاله مطلق است

با انبساط جهان اسپین سی. پی. اچ. ها به بیشتر به حرکت انتقالی تبدیل می شوند و این امر عامل انبساط و شتاب جهان است. هنگامیکه سرعت انتقالی سی. پی. اچ. ها به ماکزیمم مقدار خود می رسند (اسپین به مقدار مینیمم می رسد) آنگاه انبساط جهان متوقف شده و شروع به انقباض می کند.

در این حالت یکی از سیاه چاله های موجود در جهان همه چیز موجو در جهان حتی گرانش را می بلعد و به یک سیاه چاله مطلق تبدیل می شود. در چنین سیاه چاله ای اسپین سی. پی. اچ. ها به ماکزیمم می رسد و دیگر از نیروی خارجی تبعیت نمی کند و سیاه چاله منفجر می شود و جهان در حال انبساط شکل می گیرد و این داستان جهان است که دائماً تکرار می شود.

 

با تشکر

حسین جوادی

 

با تشکر از آقای آلفونسو ویچینی پارا که مقاله  

 

Why Time Might Flow in One Direction

 

را به گروه

 

فرستادند

 

Why Time Might Flow in One Direction

 

Summary - (Nov 1, 2004) Physicists have puzzled for more than a century about the nature of time. Why does it go in one direction? Time could go backwards, and physics formulas would still work properly. Researchers from the University of Chicago think they might have an answer: we live in a universe of ever increasing entropy. Instead of one Big Bang going off, and then the Universe expands and cools forever, small fluctuations in nearly empty space could set off new Big Bangs - the Universe would never reach equilibrium. 

Full Story -

The big bang could be a normal event in the natural evolution of the universe that will happen repeatedly over incredibly vast time scales as the universe expands, empties out and cools off, according to two University of Chicago physicists.
“We like to say that the big bang is nothing special in the history of our universe,” said Sean Carroll, an Assistant Professor in Physics at the University of Chicago. Carroll and University of Chicago graduate student Jennifer Chen will electronically publish a paper describing their ideas at 
http://arxiv.org/.

Carroll and Chen’s research addresses two ambitious questions: why does time flow in only one direction, and could the big bang have arisen from an energy fluctuation in empty space that conforms to the known laws of physics?
The question about the arrow of time has vexed physicists for a century because “for the most part the fundamental laws of physics don’t distinguish between past and future. They’re time-symmetric,” Carroll said.
And closely bound to the issue of time is the concept of entropy, a measure of disorder in the universe. As physicist Ludwig Boltzmann showed a century ago, entropy naturally increases with time. “You can turn an egg into an omelet, but not an omelet into an egg,” Carroll said.

But the mystery remains as to why entropy was low in the universe to begin with. The difficulty of that question has long bothered scientists, who most often simply leave it as a puzzle to answer in the future.

Carroll and Chen have made an attempt to answer it now.

Previous researchers have approached questions about the big bang with the assumption that entropy in the universe is finite. Carroll and Chen take the opposite approach. “We’re postulating that the entropy of the universe is infinite. It could always increase,” Chen said.

To successfully explain why the universe looks as it does today, both approaches must accommodate a process called inflation, which is an extension of the big bang theory. Astrophysicists invented inflation theory so that they could explain the universe as it appears today. According to inflation, the universe underwent a period of massive expansion in a fraction of a second after the big bang.

But there’s a problem with that scenario: a “skeleton in the closet,” Carroll said. To begin inflation, the universe would have encompassed a microscopically tiny patch in an extremely unlikely configuration, not what scientists would expect from a randomly chosen initial condition. Carroll and Chen argue that a generic initial condition is actually likely to resemble cold, empty space—not an obviously favorable starting point for the onset of inflation.
In a universe of finite entropy, some scientists have proposed that a random fluctuation could trigger inflation. This, however, would require the molecules of the universe to fluctuate from a high-entropy state into one of low entropy—a statistical longshot.

“The conditions necessary for inflation are not that easy to start,” Carroll said. “There’s an argument that it’s easier just to have our universe appear from a random fluctuation than to have inflation begin from a random fluctuation.”
Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these flucuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

Regardless of the direction they run in, the new universes created in these big bangs will continue the process of increasing entropy. In this never-ending cycle, the universe never achieves equilibrium. If it did achieve equilibrium, nothing would ever happen. There would be no arrow of time.

“There’s no state you can go to that is maximal entropy. You can always increase the entropy more by creating a new universe and allowing it to expand and cool off,” Carroll explained.

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

آخرین مقالات


 

 

 

 

 

 

 

 

 

 

 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

مرز بین ایمان و تجربه  

نامه سرگشاده به حضرت آیت الله هاشمی رفسنجانی

آرشیو موضوعی

اختر فیزیک

اجتماعی

الکترومغناطیس

بوزونها

ترمودینامیک

ذرات زیر اتمی

زندگی نامه ها

کامپیوتر و اینترنت

فیزیک عمومی

فیزیک کلاسیک

فلسفه فیزیک

مکانیک کوانتوم

فناوری نانو

نسبیت

ریسمانها

سی پی اچ

 فیزیک از آغاز تا امروز

زندگی نامه

از آغاز کودکی به پدیده های فیزیکی و قوانین حاکم بر جهان هستی کنجکاو بودم. از همان زمان دو کمیت زمان و انرژی بیش از همه برایم مبهم بود. می خواستم بدانم ماهیت زمان چیست و ماهیت انرژی چیست؟


 

 

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013