که
در آن به ترتیب e , c , h , e
و از چپ به راست بار الکترون، سرعت نور، ثابت پلانک تقسیم بر
دو پی و ثابت گذردهی خلاء است
در
توضیح این عدد گفته شده که زیبایی آن در این است که همه ی
ثابت ها که در این رابطه وجود دارند، هرکدام بعد خود را
دارد، اما این عدد بی بعد است
اهمیت
این عدد در آن است که با آن بزرگی کنش الکترومغناطیسی را
اندازه می گیرند. این عدد 1/137 با تمام اعداد یک فرق مهم
دارد و آن این است که در الکترومغناطیس کوانتومی بطور شگفت
انگیزی نقش ایفا می کند
هنگامی که
می خواهیم یک مرحله ساده را حساب کنیم، مانند هنگامیکه دو
الکترون با تبادل یک فوتون از یکدیگر دور می شوند، ما تنها
به یک حالت ساده تبادل فوتون نیاز داریم - هر گونه فوتون
اضافی با ضریبی از 137/1 منظور خواهد شد
What is the significance of
the number 137 in physics?
The
importance of the number 137 is that it is related to the
so-called 'fine-structure constant' of quantum
electrodynamics. This derived quantity is given by combining
several fundamental constants of nature:
where
e is the charge on the electron, c is the speed of light, h-bar
is Planck's constant and the epsilon represents the permittivity
of free space. Despite the fact that each of these constants
have their own dimensions, the fine-structure constant is
completely dimensionless!
The importance of the constant is that it measures the strength
of the electromagnetic interaction. It is precisely because the
constant is so small (i.e. 1/137 as opposed to 1/3 or 5 or
100...) that quantum electrodynamics (QED) works so amazingly
well as a quantum theory of electromagnetism. It means that when
we go to calculate simple processes, such as two electrons
scattering off one another through the exchange of photons, we
only need to consider the simple case of one photon exchange --
every additional photon you consider is less important by a
factor of 1/137. This is why theorists have been so successful
at making incredibly accurate predictions using QED. By
contrast, the equivalent 'fine-structure' constant for he theory
of strong interactions (quantum chromodynamics or QCD) is just
about 1 at laboratory energy scales. This makes calculating
things in QCD much, much more involved.
It is worth noting that the fine-structure 'constant' isn't
really a constant. The effective electric charge of the electron
actually varies slightly with energy so the constant changes a
bit depending on the energy scale at which you perform your
experiment. For example, 1/137 is its value when you do an
experiment at very low energies (like Millikan's oil drop
experiment) but for experiments at large particle-accelerator
energies its value grows to 1/128.