همانطور که
قبلاً توضیح دادم( مقالات 1 و 2 را
ببینید)، گراویتون بار-رنگ یا مغناطیس-رنگ است. یک گراویتون نظیر
ذره ی تبادلی نیروی الکتریکی عمل می کند که آن را فوتون می نامند.
بنابراین ما می توانیم با توجه بهعدد
آلفا مقدار
عددی ذره ی تبادلی گرانش را توضیح دهیم. همچنانکه می دانیم عدد
آلفا برابر است با:
برای به دست آوردن
ساختار ثابت گرانشی بایستی به نسبت نیروی گرانش و نیروی الکتریکی
توجه کنیم. برای اینکار نیروی الکتریکی و نیروی گرانشی بین الکترون
و پروتون را در اتم هیروژن حساب می کنیم. خواهیم داشت:
Fe=kq1q2/r2, Fg=Gm1m2/r2,
بنابراین داریم:
Fg/Fe=10-40,
پس:
بنابراین:
Alfa of gravity is 1/137x1040
همچنین باید توجه
داشت که در رابطه ی آلفا h-bar اسپین
فوتون و ثابت است. اما در رابطه ی آلفای گرانش h-bar اسپین
گراویتون و برابر 2 است و با توجه به نظریه سی. پی. اچ. اسپین
تابعی از شدت گرانشی است.
Index;
The importance of the number 137 is that
it is related to the so-called 'fine-structure constant' of
quantum electrodynamics. This derived quantity is given by
combining several fundamental constants of nature:
where e is the charge on the electron, c is the speed of light,
h-bar is Planck's constant and the epsilon represents the
permittivity of free space. Despite the fact that each of these
constants have their own dimensions, the fine-structure constant
is completely dimensionless!
The importance of the constant is that it measures the strength
of the electromagnetic interaction. It is precisely because the
constant is so small (i.e. 1/137 as opposed to 1/3 or 5 or
100...) that quantum electrodynamics (QED) works so amazingly
well as a quantum theory of electromagnetism. It means that when
we go to calculate simple processes, such as two electrons
scattering off one another through the exchange of photons, we
only need to consider the simple case of one photon exchange --
every additional photon you consider is less important by a
factor of 1/137. This is why theorists have been so successful
at making incredibly accurate predictions using QED. By
contrast, the equivalent 'fine-structure' constant for he theory
of strong interactions (quantum chromodynamics or QCD) is just
about 1 at laboratory energy scales. This makes calculating
things in QCD much, much more involved.
It is worth noting that the fine-structure 'constant' isn't
really a constant. The effective electric charge of the electron
actually varies slightly with energy so the constant changes a
bit depending on the energy scale at which you perform your
experiment. For example, 1/137 is its value when you do an
experiment at very low energies (like Millikan's oil drop
experiment) but for experiments at large particle-accelerator
energies its value grows to 1/128.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
آخرین
مقالات |