English

Contact us

نظر دهید

تماس با ما

فارسی

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

 

نظریه سی پی اچ بر اساس تعمیم سرعت نور از انرژی به ماده بنا شده است.

اخبار

آرشیو مقالات

 

سی پی اچ در ژورنالها

   

 

نگاهی بر اولین لحظات جهان

 

 

 


مدل جدید کیهانشناسی، توصیف اولین دوره زمانی جهان را به چالش کشیده است؛ دوره ای که با مدل های جاری قابل دسترسی نیست.

تورم کیهانی(Cosmological Inflation)، فرضیه ای که بنابر آن، جهان اولیه یک انبساط بی نهایت سریع را تجربه می کند، یک الگوی مورد پسند در کیهانشناسی مدرن است. این نظریه به شکل موفقیت آمیزی توضیح می دهد که چگونه افت و خیزهای کوانتومی خلاء، که در حدود 36-10 ثانیه پس از Big bang بیگ بنگ شروع می شود، می تواند به ساختار بزرگ-مقیاس جهان ما بیانجامد و منجر به پیش گویی هایی شود که با گستره وسیعی از مشاهدات کیهانشناسی تایید شده است. با این وجود کیهانشناسی تورمی نمی تواند نظریه ای نهایی برای جهان باشد. بر طبق این نظریه اگر جهان را در زمان به عقب برگردانیم، بسیار داغ و پر چگال می شود و در نتیجه قوانین فیزیک، که تورم بر پایه آن بنا شده است (نسبیت عام کلاسیکی)، شکست می خورد. در دوره زمانی مشهور به پلانک – که به یک ثانیه پلانک یعنی 43-10 ثانیه، بعد ازBig bang بیگ بنگ می رسد، نیروی گرانشی به مقادیر قابل مقایسه با نیروهای اساسی دیگر رسیده و در این رژیم اثرات گرانش کوانتومی اهمیت می یابند و سبب ایجاد شرایطی می شود که فراتر از فهم و درک سنتی از فضا و زمان است.

 


چه شرایطی مقدم بر تورم وجود داشته و تا چه حدی این شرایط پیش گویی های مدل تورمی را تحت تاثیر قرار می دهد؟ چنین سوالات اساسی کیهانشناسی بی پاسخ مانده اند، چون ما هنوز نظریه ای را سراغ نداریم که با فیزیکِ پیش از نظریه تورم درگیر باشد و بتواند با ملایمت آن را به دوره تورمی متصل کند. در مجله فیزیکال ریویو لترز (PRL)، اگالوو و همکارانش در دانشگاه ایالتی پنسیلوانیا در پارک دانشگاهی، گرانش کوانتومی حلقوی (LQG) - نظریه ای که نامزدی برای گرانش کوانتومی محسوب می شود– را اتخاذ کرده و از آن برای بسط سناریوی تورمی تا دوره پلانک مورد استفاده قرار داده اند. نویسندگان این مقاله همچنین دریافتند که ویژگی های فاز پیش تورمیِ در نظر گرفته شده، می تواند از یافته های کیهانشناختی قابل مشاهده نیز نتیجه گردد. بنابراین از این طریق فرصتی برای آزمودن گرانش کوانتومی و سنجش پیش تورمی در مشاهدات نجومی آینده فراهم می آید.
در دهه 1980 گاث، لینده،آلبرشت، و اشتاینهارت نظریه تورم کیهانشناختی را برای توضیح دو معما در مدل Big bang بیگ بنگ کیهانشناسی پیشنهاد دادند: چرا جهان ما تقریباً تخت است (یعنی می تواند بعنوان یک فضای اقلیدسی با انحنای بسیار بسیار کوچک توصیف گردد) و چرا اینگونه به نظر می رسد که نواحی بسیار دور در جهان یک همبستگی غیرتصادفی در دماهایشان دارند. مدل تورمی پاسخ هایی را برای این سوالات فراهم می کند، با اصل قرار دادن اینکه جهان به سرعت با فاکتور حداقل 1078،در دوره زمانی اولیه تحول کیهانی، بسط یافته است. مدلهای بسیاری از تورم وجود دارد، اما به شکل کیفی همه آنها به فیزیک مشابهی منجر می گردد: در طی تورم، افت و خیزهای کوانتومی خلاء به افت و خیزهای چگالی منجر می شود که بعنوان بذرهای اولیه ساختار بزرگ مقیاس جهان کنونی عمل کرده اند. چون این افت و خیزهای چگالی همراه با افت و خیزهای دمایی هستند، نقش قابل مشاهده ای را روی تابش زمینه ریز-موج کیهانی (CMB) می گذارند- به محض اینکه انبساط جهان به فوتونها این امکان را بدهد که آزادانه در فضا حرکت کنند، تابش حرارتی آزاد می شود. پیش گویی های بعمل آمده توسط نظریه تورمی کاملاً با اندازه گیری های مدرن CMB تایید شده است.

برخلاف موفقیت های قابل ملاحظه ی نظریه تورمی، این نظریه مشکلات مختلفی نیز دارد. اولین آنها "مسئله تکینگی" است. در سال 2003 بورده و همکارانش نشان دادند که مدل تورمی پیش بینی می کند که جهان، در صورتی که از لحاظ زمانی به عقب باز گردد به یک نقطه چروکیده میشود- تکینگی Big bang بیگ بنگ- که در آن چگالی انرژی، انحنای فضا-زمان و دما بینهایت هستند. چون نسبیت عام تحت این شرایط فرو می ریزد نظریه تورمی با نزدیک شدن به نقطه تکینگی، نمی تواند معتبر باقی بماند. مشکل دیگرِ مدل تورمی مسئله ی "ترانس-پلانکیان" است: بر اساس این مدل مقیاس های کیهانشناختی جاری از ویژگی هایی نشأت می گیرند که کوچکتر از طول پلانک در آغاز تورم است. طول پلانک ( فاصله طی شده توسط نور در یک ثانیه پلانک) مقیاس طول طبیعی در دوره ی پلانک است. اما در چنان مقیاس کوچکی، توصیف کلاسیکی فضا-زمان و گرانش نامعتبر است.
در چگالی و انرژی های بالای رژیم پیش تورمی، انتظار می رود اثرات نیروی گرانشی نیز نقش بازی کنند، تحت چنان شرایطی یک نظریه کوانتومی جدید، برای توصیف ریز-ساختار فضا-زمان نیاز است؛ درست شبیه راهی که مکانیک کوانتومی ریز-ساختار ماده را توصیف می کند. گرانش کوانتومی حلقوی تلاشی است برای ترکیب مکانیک کوانتومی و نسبیت عام. در این نظریه هندسه ی پیوسته کلاسیکی فضا-زمانی با هندسه گسسته کوانتومی جایگزین می شود: می توان فضا را متشکل از "حلقه" های محدود ریز در نظر گرفت.
در طول دهه گذشته، به امید درک فیزیک دوره پلانک و حل مشکلات تکینگی مدلهای مختلفِ کیهانشناختی که شامل تورم می شوند، مدل LQG بکار گرفته شده است (نظریه ای که بعنوان کیهانشناسی کوانتومی حلقوی شناخته شده). اگرگسستگی فضا از چنان اهمیتی برخوردار نباشد، معادلات LQG، مدلهای کلاسیکی کیهانشناسی را بی نهایت خوب تخمین می زنند (شبیه پدیدار شدن مکانیک کلاسیک از مکانیک کوانتومی وقتی اثرات کوانتومی قابل چشم پوشی باشند). با این وجود تفاوت ها زمانی بارز می شوند که انحنای فضازمانی اهمیت یابد. درمدل LQG ، جهان از تکینگی پدیدار نمی شود بلکه به جای "Big bang بیگ بنگ" ، "جهش بزرگ" جایگزین می گردد یعنی: شروع دوره انبساط به دنبال دوره ی انقباض فاز اولیه جهان.
در کاری که اگالوو و همکارانش انجام داده اند الگوی جهش LQG را پذیرفته شده و مشکل تکینگی مرتفع می گردد. ایده اصلی این گروه تحقیقاتی این است که در فاز نزدیک به جهش، افت و خیزهای خلاء در طول یک هندسه فضا- زمانی غیر کلاسیکی و کوانتیده و در حجم کوچک تقریباَ 103 مکعب طول پلانک رخ می دهد. این افت و خیزها به عنوان بذرهای اولیه ساختار بزرگ-مقیاس جهان ما عمل می کنند. چون یک نظریه کامل گرانش کوانتومی هنوز قابل دسترسی نیست این محققان بایستی خودشان را به یک تقریب محدود می کردند: آنها افت و خیزها را با استفاده از نظریه میدان کوانتومی استاندارد برطرف می کنند ( همانند کیهانشناسی تورمی). آنان، مزیت نتایج اخیر را اخذ کرده و چگونگی نمو و رشد این افت و خیزها در فضا زمانی که با تکینگی LQG کوانتیده شده را مطالعه می کنند. چون الگوی تورمی از طریق LQG به دوره پلانک توسعه می یابد، ناسازگاری ترانس-پلانکیان نیز حل می شود، چنانچه LQG طولهای زیر-پلانک را به سختی مورد عمل قرار می دهد. بایستی توجه کرد که سازگاری تحلیل آنها به یک فرض مهم متکی است: افت و خیزهای خلاء کوانتومی، هندسه کوانتومی مورد نظر را تحت تاثیر قرار نمی دهد. نویسندگان این مقاله نتیجه می گیرند که برای کلاس بزرگی از شرایط اولیه ممکن، افت و خیزهای خلاء در آغاز تورم، شبیه آنچه در تورم استاندارد مورد بررسی قرار گرفته است، یک مسئله اساسی بشمار می رود. مدلِ بر پایه LQG ی آنها که به شکل شماتیک در شکل 1 نشان داده شده است، سازگار با پیشگویی های نظری تورمی است و آن را به شکل پیوسته ای به دوره پلانک تعمیم می دهد.

با این وجود برای زیرمجموعه ای از چنان شرایط اولیه ای، حالت خلاء ای که LQG پیش بینی کرده به شکل ماهرانه ای متفاوت از آن چیزی است که در تورم فرض شده است. این موضوع به اثر قابل مشاهده بالقوه گرانش کوانتومی می انجامد که می تواند در آزمایشات دقیق CMB ظاهر شود؛ شبیه خواص آماری غیرگاوسی توزیع دمایی ( که اننظار می رود مجزای از پیش گویی های مدل های تورمی استاندارد باشد). چنانچه مشاهدات آینده پیش بینی های LQG را تایید کند دوره دور از دسترس جهان اولیه برای کیهانشناسی، قابل دسترس خواهد بود.
با نگاه به جهان بسیار اولیه، زمانی که گرانش با دیگر نیروها هم تراز بوده، می توان کلیدی را برای یک نظریه کاملاً سازگار بدست آورد که نسبیت عام و مکانیک کوانتوم را متحد کند.

توضیح شکل طرح شماتیک تحول جهان بر اساس مدل اگالوو و همکارانش بر پایه یک گرانش کوانتومی حلقوی LQG که بسط الگوی تورمی است. LQG برای توصیف جهان اولیه دوره پلانک استفاده می شود. نویسندگان این مقاله نشان می دهند که نظریه ی آنها با کیهانشناسی تورمی سنتی ارتباط برقرار کرده و پیش گویی های مشابهی با ملاحظه زمینه میکرو ویو کیهانی دارد. این مدل به جای "Big bang بیگ بنگ" بر اساس "جهش بزرگ" بنا شده است: گزاری از یک فاز انقباضی به یک فاز انبساطی جهان.
 

 



منبع: 
http://physics.aps.org/articles/v5/142


نقل از بیگ بنگ بلوگ اسکای

 

مرز بین ایمان و تجربه  

نامه سرگشاده به حضرت آیت الله هاشمی رفسنجانی

 

A Glance at the Earliest Universe

Parampreet Singh, Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

Published December 17, 2012  |  Physics 5, 142 (2012)  |  DOI: 10.1103/Physics.5.142

 

A new cosmological theory tackles the description of the earliest era of the Universe, a period inaccessible by current models.

Cosmological inflation, the hypothesis that the early Universe underwent an extremely rapid expansion, is a popular paradigm in modern cosmology. The theory successfully explains how quantum mechanical fluctuations of the vacuum, starting about  seconds after the big bang, could have given rise to the large-scale structure of our Universe, leading to predictions that have been confirmed by a range of cosmological observations. However, inflationary cosmology cannot be the ultimate theory of the Universe. If one projects the Universe backward in time, it gets so hot and dense that the laws of physics on which inflation is based (classical general relativity) break down. In the so-called Planck era, lasting up to one Planck second (s) after the big bang, the force of gravity would have reached values comparable to the other fundamental forces. In this regime, quantum gravity effects would have been important, creating conditions that go beyond the conventional understanding of space and time.

 

 

Scheme of the evolution of the Universe according to the model of Agullo et al., based on a loop-quantum-gravity (LQG) extension of the inflationary paradigm (figure is not to scale). LQG is used to describe the early Universe of the Planck era. The authors show that their theory smoothly connects with conventional inflationary cosmology, delivering similar predictions regarding the observable cosmic microwave background. The model is based on a “big bounce” instead of a big bang: a transition from a contracting to an expanding phase of the Universe.

 

What conditions existed prior to inflation and to what extent do they affect the predictions of the inflationary model? Such fundamental cosmological questions remain unanswered, since we don’t yet have a theory that can tackle the physics of the preinflation era and smoothly connect it to the inflationary period. Writing in Physical Review Letters, Ivan Agullo and colleagues at Pennsylvania State University in University Park, take loop quantum gravity (LQG)—one candidate theory of quantum gravity—and use it to extend the inflationary scenario all the way to the Planck era [1]. The authors also find that features of the preinflationary phase could result in observable cosmological signatures, thus providing an opportunity to test quantum gravity and probe preinflationary physics in future astronomical observations.

In the 1980s, Guth, Linde, Albrecht, and Steinhardt proposed the theory of cosmological inflation [2] to explain two puzzles in the big bang model of cosmology: why our Universe is approximately flat (i.e., it can be described as a Euclidian space, with a vanishingly small curvature) and why very distant regions in our Universe appear to have a nonrandom correlation in their temperatures (which suggests they were once causally connected). Inflation provides answers to these questions by postulating that the volume of the Universe rapidly expanded by a factor of at least  in an early period of cosmic evolution. Many models of inflation exist, but qualitatively they all lead to similar physics: during inflation, quantum fluctuations of the vacuum lead to density fluctuations that acted as the seeds of the large-scale structure of the present Universe. Since these density fluctuations were accompanied by temperature fluctuations, they left an observable imprint on the cosmic-microwave-background (CMB) radiation—the thermal radiation released once the Universe expansion allowed photons to travel freely in space. The predictions made by the inflationary theory have been largely confirmed by state-of-the-art CMB measurements [3].

Despite its remarkable successes, the theory of inflation has several problems. The first is the so-called “singularity problem.” In 2003, Borde et al. showed that inflation predicts that the Universe, when evolved backward in time, would shrink to a point—the big bang singularity—at which energy density, spacetime curvature, and temperature are infinite [4]. Since general relativity breaks down under these conditions, the current inflationary theory cannot remain valid as the singularity is approached. Another difficulty is the “trans-Planckian” problem [5]: according to inflation, current cosmological scales could have developed from features that were smaller than the Planck length at the onset of inflation. The Planck length (the distance traveled by light in 1Planck second) is the natural length scale in the Planck era. But on such a small scale, the classical description of spacetime and gravity is believed to be invalid.

At the high densities and energies of the preinflationary regime, it is expected that quantum effects on the force of gravity come into play. Under such conditions, a new quantum theory of gravity, yet to be completed, is needed to describe the “microstructure” of spacetime, similar to the way quantum mechanics describes the microstructure of matter. Loop quantum gravity is one such attempt to merge quantum mechanics and general relativity. In LQG, the classical continuum geometry of spacetime is replaced by a quantum discrete geometry: space can be viewed as made of a fine fabric of finite “loops.”

Over the past decade, LQG has been applied to cosmology (a field known as loop quantum cosmology), with the hope of understanding Planck-era physics and solving the singularity problems of different cosmological models, including inflation [6, 7]. When the discreteness of space does not matter, the equations of LQG approximate classical models of cosmology extremely well (much like quantum mechanics merges into classical physics when quantum effects are negligible). Yet differences arise when the curvature of the spacetime starts to be significant. In LQG, the Universe does not emerge from a singularity. Instead, the big bang is replaced by a “big bounce”: the beginning of a period of expansion that followed a period of contraction of a previous phase of the Universe [6].

The work of Agullo et al. adopts the bounce paradigm of LQG and thus it is free of the singularity problem. Their key physical idea is that in the phase close to the bounce, vacuum fluctuations occurred over a nonclassical, quantized spacetime geometry in a tiny volume of approximately  cubic Planck lengths. These are the fluctuations that act as the seeds of the large-scale structure of our Universe. Since a full theory of quantum gravity is not yet available, the authors had to restrict themselves to an approximation: they treat fluctuations with standard quantum field theory (as in inflationary cosmology), but they take advantage of recent theoretical results [8] and study how these fluctuations evolve in a spacetime that is quantized by LQG techniques. Since the inflationary paradigm is extended via LQG to the Planck-era, trans-Planckian inconsistencies are also resolved, as LQG can treat rigorously sub-Planck lengths. One should note that the consistency of their analysis relies on one important assumption: the quantum vacuum fluctuations do not, in turn, affect the underlying quantum geometry. The authors show that this is true for a large class of possible initial conditions, for which vacuum fluctuations at the onset of inflation turn out to be essentially the same as the ones considered in the standard inflationary. Their LQG-based model, schematically illustrated in Fig. 1, is thus consistent with the predictions of inflationary theory and extends it in a continuous way to the Planck era.

However, for a narrow subset of such initial conditions, the LQG-predicted vacuum state can be subtly different from the one assumed in inflation. This would lead to potentially observable signatures of quantum gravity [9] that could be revealed in high-precision CMB experiments as non-Gaussian statistical properties of the temperature distribution (which are expected to be distinct from the predictions of standard inflationary models). Should future observations confirm LQG predictions, a so-far-inaccessible era of the early Universe would become accessible to observational cosmology.

Being able to look at the very early Universe, when gravity was on par with the other forces, may well hold the key for a fully consistent theory that unifies general relativity and quantum mechanics.

References

  1. I. Agullo, A. Ashtekar, and W. Nelson, “Quantum Gravity Extension of the Inflationary Scenario,” Phys. Rev. Lett. 109, 251301 (2012).

  2. A. Guth, “Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23, 347 (1981); A. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy, and Primordial Monopole Problems,” Phys. Lett. B 108, 389 (1982); A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced 4 Symmetry Breaking,” Phys. Rev. Lett. 48, 1220 (1982).

  3. E. Komatsu et al. (WMAP Collaboration), “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192, 18 (2011).

  4. A. Borde, A. H. Guth, and A. Vilenkin, “Inflationary Space-Times Are Incomplete in Past Directions,” Phys. Rev. Lett.90, 151301 (2003).

  5. J. Martin and R. Brandenberger, “The Trans-Planckian Problem of Inflationary Cosmology,” Phys. Rev. D 63, 123501 (2001).

  6. A. Ashtekar and P. Singh, “Loop Quantum Cosmology: A Status Report,” Class. Quant. Grav. 28, 213001 (2011).

  7. M. Bojowald, “Loop Quantum Cosmology,” Living Rev. Relativity 11, 4 (2008).

  8. A. Ashtekar, W. Kaminski, and J. Lewandowski, “Quantum Field Theory on a Cosmological, Quantum Spacetime,”Phys. Rev. D 79, 064030 (2009).

  9. I. Agullo and L. Parker, “Non-Gaussianities and the Stimulated Creation of Quanta in the Inflationary Universe,” Phys. Rev. D 83, 063526 (2011); I. Agullo and S. Shandera, “Large Non-Gaussian Halo Bias from Single Field Inflation,” J. Cosmol. Astropart. Phys. 1209, 007 (2012); J. Ganc and E. Komatsu, “Scale-Dependent Bias of Galaxies and Mu-type Distortion of the Cosmic Microwave Background Spectrum from Single-Field Inflation with a Modified Initial State,” Phys. Rev. D 86, 023518 (2012).

 

Source: APS

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

آخرین مقالات


 

 

 

 

 

 

 

 

 

 

 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

مرز بین ایمان و تجربه  

نامه سرگشاده به حضرت آیت الله هاشمی رفسنجانی

آرشیو موضوعی

اختر فیزیک

اجتماعی

الکترومغناطیس

بوزونها

ترمودینامیک

ذرات زیر اتمی

زندگی نامه ها

کامپیوتر و اینترنت

فیزیک عمومی

فیزیک کلاسیک

فلسفه فیزیک

مکانیک کوانتوم

فناوری نانو

نسبیت

ریسمانها

سی پی اچ

 فیزیک از آغاز تا امروز

زندگی نامه

از آغاز کودکی به پدیده های فیزیکی و قوانین حاکم بر جهان هستی کنجکاو بودم. از همان زمان دو کمیت زمان و انرژی بیش از همه برایم مبهم بود. می خواستم بدانم ماهیت زمان چیست و ماهیت انرژی چیست؟

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013