English

Contact us

نظر دهید

تماس با ما

فارسی

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

 

نظریه سی پی اچ بر اساس تعمیم سرعت نور از انرژی به ماده بنا شده است.

اخبار

آرشیو مقالات

 

سی پی اچ در ژورنالها

   

 

برندگان نوبل فيزيك 2007

 

 

 


فرهنگستان سطنتي علوم سوئد جايزه نوبل فيزيك 2007 را به دو فيزيكدان فرانسوي و آلماني اهدا كرد كه كشفياتشان امكان مينياتوري كردن قطعات الكترونيكي را فراهم آورده و به اختراع دستگاه هايي مانند رايانه هاي همراه و يا iPod انجاميده است.

به گزارش شبكه BBC ، آلبر فر ، فيزيكدان فرانسوي و پتر گرونبرگ، فيزيكدان آلماني جايزه نوبل 2007 را به صورت مشترك و براي تحقيقاتي دريافت مي كنند كه سال ها پيش و به صورت مستقل از يكديگر انجام داده و منجر به دستاوردهاي نويني براي علم فيزيك شدند.
پتر گرونبرگ در سال در پيلسن ( پلزن امروزي در جمهوري چك) متولد شده است. او در سال 1986 هنگامي كه در بخش فيزيك حالت جامد در انستيتوي تحقيقاتي يوليخ در غرب آلمان به كار اشتغال داشت، به كشفياتي در زمينه الكترومغناطيس رسيد كه دو سال بعد منجر شد او پديده اثر مقاومت بزرگ مغناطيسي GMRرا كشف كند.

آلبر فر، فيزيكدان فرانسوي در سال 1938 در كاركاسون متولد شده است. او نيز هم زمان با گرونبرگ در سال 1988 در دانشگاه پاريس - جنوب در اورسي به شيوه ديگري پديده اثر مقاومت بزرگ مغناطيسي GMRرا كشف كرد.

استفاده از اين پديده اين امكان را فراهم مي آورد كه داده هايي كه به صورت مغناطيسي در ديسك هاي سخت CD ذخيره شده اند به سيگنال هايي الكتريكي تبديل شوند كه براي رايانه ها قابل پردازش و فهم باشند.

به اين ترتيب امكان توليد قطعات مينياتوري در دستگاه هاي الكترونيكي و رايانه اي فراهم آمد كه حاصل آن دستگاه هايي مانند رايانه هاي همراه و يا «آي پاد» iPod است.

پتر گرونبرگ در زماني برنده جايزه فيزيك نوبل مي شود كه در دوران بازنشستگي خود به سر مي برد اما آلبر فر همچنان در دانشگاه پاريس - جنوب تدريس مي كند.

ا

رسال خبر : محمد ميرزايي

 

منبع خبر : جام جم آنلاين

 

نقل از هوپا

 

 

Nobel prize recognizes GMR pioneers

The 2007 Nobel Prize in Physics has been awarded jointly to Albert Fert of the Université Paris-Sud in France and Peter Grünberg of the Forschungszentrum Jülich in Germany "for the discovery of giant magnetoresistance". Their discovery, which both physicists made independently in 1988, led to a dramatic rise in the amount of data that can be stored on computer hard-disk drives. Fert and Grünberg share prize money totalling 10 million Swedish krone (about $1.5m).

Giant magnetoresistance, or GMR, is the sudden change in electrical resistance that occurs when a material consisting of alternating ferromagnetic and non-magnetic metal layers is exposed to a sufficiently high magnetic field. In particular, the resistance becomes much lower if the magnetization in neighbouring layers is parallel and much higher if it is antiparallel. This change in resistance is due to "spin up" and "spin down" electrons scattering differently in the individual layers.

Peter Grünberg

GMR has since been used to develop extremely small and sensitive read heads for magnetic hard-disk drives. These have allowed an individual data bit to be stored in a much smaller area on a disk, boosting the storage capacity greatly. The first commercial read heads based on GMR were launched by IBM in 1997 and GMR is now a standard technology found in nearly all computers worldwide and is also used in some digital cameras and MP3 players.

Albert Fert

In Grünberg's original work, he and his team studied an iron/chromium/iron trilayer system that showed an decrease in resistance of 1.5%. Fert and colleagues, in contrast, studied an iron/chromium multilayer system in which the electrical resistance decreased by nearly 50%.

"These films started out as being very esoteric, but it turned out that they would have great practical importance," says Tony Bland, a physicist from the University of Cambridge. "They paved the way for substantial information densities of commercial disk drives. It also paved the way for new physics, such as tunneling magnetoresistance (TMR), spintronics and new sensor technology, for example biosensors. The caveat is that GMR has already become old technology and people are now interested in TMR for future technology."

TMR gives rise to a more pronounced resistance change in small applied fields than is found in GMR devices.

Albert Fert was born in 1938 in Carcassone, France, and received a PhD in physics in from Université Paris-Sud, Orsay in France. He is now also scientific director of CNRS/Thales Unité Mixte de Physique in Orsay. Peter Grünberg was born in 1939 in Pilsen (now in Czech Republic) and is a German citizen. He gained his PhD in physics from the Technische Universität Darmstadt, Germany.

Grünberg, who holds a patent on GMR, originally submitted his paper slightly before Fert, although Fert's was published first. "But whereas Fert was able to describe all the underlying physics, Grünberg immediately saw the technological importance," adds Bland.

Source: Physicsworld

'Ubiquitous' technology

Professor Ben Murdin of the University of Surrey, UK, said giant magnetoresistance, or GMR, was the science behind a ubiquitous technological device. "Without it you would not be able to store more than one song on your iPod!" he explained.

"A computer hard-disk reader that uses a GMR sensor is equivalent to a jet flying at a speed of 30,000 kmph, at a height of just one metre above the ground, and yet being able to see and catalogue every single blade of grass it passes over."

The breakthrough underpins how data is read from hard disks

GMR involves structures consisting of very thin layers of different magnetic materials.

For this reason it can also be considered "one of the first real applications of the promising field of nanotechnology", the Royal Swedish Academy of Sciences said in a statement.

"Applications of this phenomenon have revolutionised techniques for retrieving data from hard disks," the prize citation said. "The discovery also plays a major role in various magnetic sensors as well as for the development of a new generation of electronics."

Source: BBC

Giant magnetoresistance

Giant magnetoresistance (GMR) is a quantum mechanical effect, a type of magnetoresistance effect, observed in thin film structures composed of alternating ferromagnetic and nonmagnetic metal layers.

The effect manifests itself as a significant decrease in electrical resistance in the presence of a magnetic field. In the absence of an applied magnetic field the direction of magnetization of adjacent ferromagnetic layers is antiparallel due to a weak anti-ferromagnetic coupling between layers, and it decreases to a lower level of resistance when the magnetization of the adjacent layers align due to an applied external field. The spins of the electrons of the nonmagnetic metal align parallel or antiparallel with an applied magnetic field in equal numbers, and therefore suffer less magnetic scattering when the magnetizations of the ferromagnetic layers are parallel.

The effect is exploited commercially by manufacturers of hard disk drives. The 2007 Nobel Prize in physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR.

Founding results of Fert et al.

Multilayer GMR

Two or more ferromagnetic layers are separated by a very thin (about 1 nm) non-ferromagnetic spacer (e.g. Fe/Cr/Fe). At certain thicknesses the RKKY coupling between adjacent ferromagnetic layers becomes antiferromagnetic, making it energetically preferable for the magnetizations of adjacent layers to align in anti-parallel. The electrical resistance of the device is normally higher in the anti-parallel case and the difference can reach more than 10% at room temperature. The interlayer spacing in these devices typically corresponds to the second antiferromagnetic peak in the AFM-FM oscillation in the RKKY coupling.

The GMR effect was first observed in the multilayer configuration, with much early research into GMR focusing on multilayer stacks of 10 or more layers.

Spin valve GMR

Two ferromagnetic layers are separated by a thin (about 3 nm) non-ferromagnetic spacer, but without RKKY coupling. If the coercive fields of the two ferromagnetic electrodes are different it is possible to switch them independently. Therefore, parallel and anti-parallel alignment can be achieved, and normally the resistance is again higher in the anti-parallel case. This device is sometimes also called a spin valve.

Spin-valve GMR

Spin valve GMR is the configuration that is industrially most useful, and is used in hard drives.

Granular GMR

Granular GMR is an effect that occurs in solid precipitates of a magnetic material in a non-magnetic matrix. In practice, granular GMR is only observed in matrices of copper containing cobalt granules. The reason for this is that copper and cobalt are immiscible, and so it is possible to create the solid precipitate by rapidly cooling a molten mixture of copper and cobalt. Granule sizes vary depending on the cooling rate and amount of subsequent annealing. Granular GMR materials have not been able to produce the high GMR ratios found in the multilayer counterparts.

Source: Wikipedia

 

CPH Theory articles

 

 Zero Point Energy and the Dirac Equation [PDF] Persian Text


 Unification and CPH Theory [PDF] 


Strong Interaction and CPH Theory [PDF]


Summary of Physics Concepts [PDF]


Quantum Electrodynamics and CPH Theory [PDF] 


Vocabulary of CPH Theory [PDF] 


Thermodynamic Laws, Entropy and CPH Theory [PDF]


: Time Function and Absolute Black Hole [PDF] 


CPH and Time [PDF]Persian Text Only


: Time Function and Work Energy Theorem [PDF] Persian Text Only 


Properties of CPH [PDF]Persian Text Only 


CPH Theory and Special Relativity [PDF] Persian Text Only


: CPH Theory and Newton's Second Law [PDF] Persian Text Only 

 

 A New Mechanism of Higgs Bosons in Producing Charge Particles [PDF] Persian Text 


Logical Foundation of CPH Theory [PDF] Persian Text 


Experimental Foundation of CPH Theory [PDF] Persian Text 


Definition, Principle and Explanation of CPH Theory [PDF] Persian Text


 Analysis of CPH Theory Persian Text


Opinions on CPH Theory [PDF] Persian Text


 Questions and Answers on CPH Theory [PDF] Persian Text


 Realization Hawking - End of Physics by CPH [PDF]Persian Text Only


 Maxwell's Equations in a Gravitational Field [PDF] Persian Text


 Effective Nuclear Charge [PDF] Persian Text


 Color Charges Curve Space [PDF] Persian Text 


Sub-Quantum Chromodynamics [PDF]


 Color Charge/Color Magnet and CPH [PDF]


 Speed of Light and CPH Theory [PDF] Persian Text 
 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

آخرین مقالات


 

 

 

 

 

 

 

 

 

 

 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

مرز بین ایمان و تجربه  

نامه سرگشاده به حضرت آیت الله هاشمی رفسنجانی

آرشیو موضوعی

اختر فیزیک

اجتماعی

الکترومغناطیس

بوزونها

ترمودینامیک

ذرات زیر اتمی

زندگی نامه ها

کامپیوتر و اینترنت

فیزیک عمومی

فیزیک کلاسیک

فلسفه فیزیک

مکانیک کوانتوم

فناوری نانو

نسبیت

ریسمانها

سی پی اچ

 فیزیک از آغاز تا امروز

زندگی نامه

از آغاز کودکی به پدیده های فیزیکی و قوانین حاکم بر جهان هستی کنجکاو بودم. از همان زمان دو کمیت زمان و انرژی بیش از همه برایم مبهم بود. می خواستم بدانم ماهیت زمان چیست و ماهیت انرژی چیست؟


 

 

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013