English

Contact us

نظر دهید

تماس با ما

فارسی

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

 

نظریه سی پی اچ بر اساس تعمیم سرعت نور از انرژی به ماده بنا شده است.

اخبار

آرشیو مقالات

 

سی پی اچ در ژورنالها

   

 

ميكروسكوپ نيروي اتمي

 

 


تاريخچه:

نانومتر واحد بسيار بسيار کوچکي براي اندازه‌گيري طول است كه در ابعاد اتمي و مولكولي كاربرد دارد. 1 نانومتر فاصلة بسيار كوچكي است و به عنوان مثال مولكول آب با آن سنجيده مي‌شود. براي درك ميزان كوچكي اين واحد طول خوب است بدانيم كه تار موي انسان حدوداً 80 هزار نانومتر قطر دارد، بنابراين براي مشاهده پديده‌ها و درك اثراتي كه در اين اندازه بسيار كوچك وجود دارد نه‌تنها به چشم غيرمسلح نمي‌توان تكيه كرد بلكه حتي از ميكروسكوپ‌هاي معمولي كه در آزمايشگاه‌ها وجود دارند نيز، نمي‌توانند استفاده کنند چراکه با اين ميکروسکوپ‌ها فقط تا ابعاد "ميکرومتر" را می‌توان دید.
به همين دليل دانشمندان با پيشرفت علم و فنون به فكر ساختن وسايلي افتادند كه بتوانند ابعاد اتمي را هم اندازه‌گيري كنند. 

وسايل زيادي با روش‌هاي مختلف براي اين منظور ساخته شده است كه خيلي از آنها كامل شده نمونه‌هاي قبلي است. اما ميكروسكوپ نيروي اتمي جزو جديدترين دستاوردهاي دانشمندان در زمينه اندازه‌گيري در ابعاد و مقياس نانو است كه در پاييز سال هزار و سيصد و شصت و سه يعني حدود بيست سال پيش توسط جرد بينينگ، كريستوف جربر و كوايت ساخته شد.

دستگاهي كه بينينگ و همكارانش ساخته بودند از نظر عملكرد كاملاً مشابه ميكروسكوپ‌هاي نيروي اتمي امروزي بود و در طي اين بيست سال تنها دقت و روش فهم نهايي اندازه‌ها پيشرفت كرده است. با اين دستگاه مي‌شد طولهايي تا حدود "سيصد آنگستروم" يا "سي نانومتر" را اندازه گرفت. با گذشت زمان اين دستگاه کاملتر شد و امروزه مي‌توان با دقتي بيش از پانصد برابر دقت ميكروسكوپ بينينگ سطوح مواد را مشاهده نمود.

 

روش كار 

مي‌دانيم كه تمامي اجسام هراندازه هم كه به ظاهر صاف و صيقلي باشند، باز هم در سطح خود داراي پستي و بلندي و ناصافي‌هايي هستند. به عنوان مثال سطح شيشه بسيار بسيار صاف و صيقلي به نظر مي‌رسد، اما اگر در مقياس خيلي کوچک به آن نگاه کنيم، خواهيم ديد که سطح شيشه پر از ناصافي‌ها يا به عبارتي "دست انداز" است. كار ميكروسكوپ نيروي اتمي نشان‌دادن اين ناصافي‌ها و اندازه‌گيري عمق آنهاست. ثبت چگونگي قرارگيري و نشان دادن عمق و ارتفاعِ پستي و بلندي‌ها در يك سطح خاص از ماده را "توپوگرافي" مي‌نامند. 

مي دانيم که نيروهاي بسيار کوچکي بصورت جاذبه و دافعه بين اتمهاي باردار وجود دارند، (درست مثل دو سر ناهمنام آهنربا که باعث دفع و جذب مي شوند.) چنين نيروهايي بين نوک ميکروسکوپ و اتمهاي سطح ايجاد مي گردد. با اندازه گيري نيروي بين اتمها در نقاط مختلف سطح، مي توان محل اتمها روي آن را مشخص کرد.

 

 

 

 

ميكروسكوپ نيروي اتمي از اجزاء و قطعات مختلفي تشكيل شده است كه مهم‌ترين بخش آن مجموعه "انبرك و نوك" مي‌باشد و در واقع قسمت اصلي براي شناخت سطوح به شمار مي‌آيد. جنس انبرك معمولاً از سيليسيم و نوك از يک تک اتم (معمولا اتم الماس) تشکيل شده است. براي اينکه ميکروسکوپ نيروي اتمي بتواند برجستگي ها و فرورفتگي ها را در ابعاد نانومتر حس کند لازم است نوک تيز انبرک ظرافت اتمي داشته باشد. همان طور که ما با دستکش کار نمي توانيم زبري يا نرمي يک سطح را حس کنيم. ازآنجا كه تصاوير مربوط به اندازه‌هاي اتمي روي يك سطح با چشم غيرمسلح يا حتي مسلح به قوي‌ترين عدسي‌ها قابل مشاهده نيست، به کمک ابزارهاي پيشرفته، حرکات عرضي لمس شده توسط انبرک و نوک ويژه ميکروسکوپ را به تصاوير ويدئويي تبديل مي‌‌‌‌کنند تا امکان مشاهده آرايش اتم‌هاي سطح، در صفحة رايانه امکانپذير باشد. 

درواقع كل فرآيند "جاروكردن سطح" به وسيله همان انبرك نوك‌دار صورت مي‌گيرد. انبرك به راحتي در پستي و بلندي‌‌‌‌ها بالا و پايين مي‌رود و انتهاي آن هم به قسمتي متصل است كه به جابجايي عرض انبرك بسيار حساس است و اين تغيير فاصله‌ها را ثبت كرده و به علائمي تبديل مي‌كند که براي رايانه قابل فهم باشد. علائم گفته شده که "سيگنال" نام دارد توسط رايانه پردازش مي‌‌‌‌شود تا نحوه قرار گيري اتم‌ها در کنارهم، بر روي صفحه نمايشگر، نشان داده ‌شود.

 


 

 

دو روش كلي براي جاروكردن سطح وجود دارد كه عبارتند از روش تماسي و روش غيرتماسي. 
در روش تماسي كه براي بيشتر سطوح كارايي دارد، نوك انبرك در فاصله‌اي بسيار بسيار کم از سطح قرار مي‌گيرد و به محض رسيدن به پستي يا بلندي به دليل جابجايي كه در انبرك ايجاد مي‌شود، امکان نمايش توپوگرافي براي رايانه فراهم مي‌گردد. درواقع نيرويي كه بين سطح و نوك انبرك وجود دارد، با نزديك‌شدن اين دو به هم زياد شده و با دورشدنشان از هم، كم مي‌شود، اين مسئاله باعث مشاهده غيرمستقيم آرايش اتم‌ها مي‌گردد. 

روش غيرتماسي بيشتر براي سطوح كثيف و آلوده مورد استفاده قرار مي‌گيرد، در اين شيوه ابتدا انبرك را با نوساني دقيق به تحرك درمي‌آوريم و آن را روي سطح هدايت مي‌كنيم. انبرك خاصيت ارتجاعي و فنري دارد و به راحتي در عرض بالا و پايين مي‌شود. در اين حالت نيرويي كه بين سطح و نوك انبرك وجود دارد، در نوسان انبرك تأثير مي‌گذارد و به اين وسيله آرايش اتمي سطح مشخص مي‌شود. 
البته اندازه‌گيري ساختارهاي بسيار ريز که موجب جابجايي بسيار کوچکي در انبرك مي‌‌‌‌شود، روي مي‌دهد خود بحث مفصلي است كه اين كار امروزه به وسيلة تغيير جهت انعكاس نوري كه از يك منبع بالاي انبرك روي آن مي‌تابانند، مشاهده مي‌شود(شکل 3).

 

 


شکل 3

 

به اين معني كه سطح انبرك به گونه‌اي صيقل داده مي‌شود كه توانايي بازتابش نور را به خوبي داشته باشد. منبع نوري اشعة مرئي را به قسمت صيقل‌داده شده مي‌تاباند و گيرنده آن را دريافت مي‌كند. به محض جابجايي عرضي انبرك، اشعه كمي منحرف مي‌شود كه باتوجه به ميزان انحراف ثبت‌شده در دستگاه، دانشمندان نقشه پستي و بلندي(توپوگرافي) را دقيقتر ترسيم مي‌‌‌‌کنند(شکل 4).

 

 


شکل 4

 

نكتة ديگري كه در مورد كاركرد ميكروسكوپ نيروي اتمي بايد بدانيم آن است كه پستي‌ها و بلندي‌ها در هر سه محور طول و عرض و ارتفاع توسط اين دستگاه گزارش مي‌شود. در نمونه‌هاي ابتدايي چون امكان نشان‌دادن بعد ارتفاع در رايانه نبود، اين كار با رنگ‌ها انجام مي‌شد. به اين صورت كه رنگ‌هاي تيره براي عمق‌هاي كم و رنگ‌هاي روشن براي عمق‌هاي زياد به كار مي‌رفتند. اما امروزه با استفاده از نرم‌افزارهاي سه‌بعدي ديداري مي‌توان توپوگرافي سطح را در هر سه بعد نشان داد. 

 

نتيجه
پس از معرفي ميكروسكوپ نيروي اتمي و روش كار آن، خوب است بدانيم كه بشر با اختراع اين وسيله پيشرفت‌هاي بسياري در علم مواد و شناخت سطوح پيدا كرده است كه در بسياري از صنايع از جمله الكترونيك، ارتباطات، خودرو، فضانوردي و انرژي تأثيرگذار بوده‌اند. درواقع اختراع ميكروسكوپ نيروي اتمي فصل جديدي در پيشرفت فناوري نانو و كاربردهاي صنعتي آن مي‌باشد. 


مراجع


1. انجمن علمي دانشجويي نانوتکنولوژي دانشکده فني دانشگاه تهران، "نانوتکنولوژي آيينه تکنولوژي آفرينش"، تهران 1380


2. introduction to AFM method and apparatus, online available at: http://www.chembio.uoguelph.ca/
3. Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P.K., Longmiro, M., and Gurley, J. (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys. 65(1), 164-167
4. How AFM works from "The tip-sample interaction in atomic force microscopy and its implications for biological applications ", Ph.D. thesis by David Baselt, California Institute of Technology, Copyright 1993 by David Baselt.

 

نمونه هايي از انبرک و نوک ميکروسکوپ نيروي اتمي:

 

 

 

برای آشنايی بيشتر با چگونگی عملکرد این نوع ميکروسکوپها میتوانيد فايل ويدئويی ذيل را دانلود (Download)  کرده و آن را مشاهده نماييد:

 

فيلم شبيه سازی میکروسکوپ نيروی اتمی

شبيه سازيهاي زير اطلاعات جالبي درباره ميکروسکوپ نيروي اتمي و نحوه کارکردن آن در اختيار مي گذارد. براي استفاده فايلهاي زير را داونلود (Download) کنيد و آن را روي رايانه خود نصب نماييد:

شبيه ساز انبرک ميکروسکوپ اتمي

مدل سازي کار ميکروسکوپ اتمي

 

يادداشت: شبيه سازي هاي بالا از سايت

www.nanoscience.com

 انتخاب شده است

نقل از باشگاه نانو


 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

آخرین مقالات


 

 

 

 

 

 

 

 

 

 

 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

آرشیو موضوعی

اختر فیزیک

اجتماعی

الکترومغناطیس

بوزونها

ترمودینامیک

ذرات زیر اتمی

زندگی نامه ها

کامپیوتر و اینترنت

فیزیک عمومی

فیزیک کلاسیک

فلسفه فیزیک

مکانیک کوانتوم

فناوری نانو

نسبیت

ریسمانها

سی پی اچ

 فیزیک از آغاز تا امروز

زندگی نامه

از آغاز کودکی به پدیده های فیزیکی و قوانین حاکم بر جهان هستی کنجکاو بودم. از همان زمان دو کمیت زمان و انرژی بیش از همه برایم مبهم بود. می خواستم بدانم ماهیت زمان چیست و ماهیت انرژی چیست؟


 

 


يکشنبه 1 دي 1392

22 December, 2013 13:27

free hit counters

Copyright 2013 CPH Theory

Last modified 12/22/2013