English

Contact us

Persian

Home

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

   

C reative

      Particle

           Higgs

  CPH Theory is based  on  Generalized light velocity from energy  into mass.

 

CPH Theory in Journals

   

 

Did Dark Matter Annihilate Our Early Universe?

 

 

 


Did Dark Matter Annihilate Our Early Universe?

 

 

Written by Ian O'Neill

A billion years after the big bang, hydrogen atoms were mysteriously torn apart into a soup of ions.

 

380,000 years after the Big Bang, the Universe cooled from being a hot soup of plasma, to a temperature where protons and electrons could combine to form atoms. This calm period of neutral hydrogen in universal history didn’t last for long however. The neutral hydrogen atoms were ripped apart once more, by a mechanism that would go on to reionize the entire Universe, a process that eventually ended a billion years after the Big Bang.

It is thought the first stars that formed prior to the reionisation epoch probably pumped out some fierce ultraviolet radiation, ionizing the neutral hydrogen, but a new (controversial) theory has been put forward. Did dark matter have a role to play in the reionisation the Universe?

As 85% of the Universe is composed of a type of matter we have yet to fully account for, it seems only natural that scientists would be looking into the possibility that dark matter had a role to play soon after the Big Bang. Although scientists are fairly confident that the reionisation period was driven by the emissions from the very first stars, there are some observational factors that could suggest dark matter annihilation might have had a role to play in the evolution of the Universe.

This is according to Dan Hooper and Alexander Belikov from Fermilab in Batavia, Illinois, in any case. In their theory recently published, the researchers examine the physics behind dark matter annihilation as the mechanism that drove the reionisation epoch.

In Hooper and Belikov’s work, they focus on dark matter that is theorized to have clumped together under gravitational attraction as the Universe cooled during the neutral hydrogen era (known as the “Dark Ages” - the Universe would have been opaque due to lack of stars and lack of electromagnetic radiation). When the dark matter during this time clumped, it is predicted to annihilate. During dark matter annihilation, high energy gamma-rays are predicted to be generated. Where gamma-radiation goes, ionization of matter is sure to follow.

A single gamma ray might reionise 1000 hydrogen atoms,” says Hooper. “The mechanism could easily have reionised the universe.”

By their reasoning, rather than emissions from stars that may have been forming at the start of the reionisation epoch, a far more potent ionization mechanism could have flooded the Universe. However, some scientists are skeptical of this idea.

We have no evidence yet that any dark matter has ever annihilated,” says Charles Bennett, principal investigator on NASA’s WMAP satellite, which has been studying the reionisation epoch. “I am not saying it is wrong, but it sounds a bit too contrived for me to eagerly accept it.” Bennett sees the dark matter argument as one mystery (reionisation) being explained by another mystery (does dark matter even annihilate?).

For now, the idea that dark matter may have been the underlying mechanism ionizing our Universe remains highly theoretical. But Hooper is eager to study the data from ESA’s upcoming Planck mission as this observatory will be able to study how reionisation proceeded with time. “The time signature of dark matter reionisation will be different from that brought about by stars,” says Hooper.

Source: New Scientist

 

Source: http://www.universetoday.com/2009/04/26/did-dark-matter-annihilate-our-early-universe/

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10  Newest articles

 


 

 

 

 

 

 

 

 

 

 

 
 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

Interesting articles

English Articles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Zero Point Energy and the Dirac Equation [PDF]

Speed of Light and CPH Theory [PDF]

Color Charge/Color Magnet and CPH [PDF]

Sub-Quantum Chromodynamics [PDF]

Effective Nuclear Charge [PDF]

Maxwell's Equations in a Gravitational Field [PDF]

 Realization Hawking - End of Physics by CPH [PDF]

Questions and Answers on CPH Theory [PDF]

Opinions on CPH Theory [PDF]

Analysis of CPH Theory

Definition, Principle and Explanation of CPH Theory [PDF]

Experimental Foundation of CPH Theory [PDF]

Logical Foundation of CPH Theory [PDF]

A New Mechanism of Higgs Bosons in Producing Charge Particles [PDF]

CPH Theory and Newton's Second Law [PDF]

CPH Theory and Special Relativity [PDF]

Properties of CPH [PDF]

Time Function and Work Energy Theorem [PDF]

Time Function and Absolute Black Hole [PDF] 

Thermodynamic Laws, Entropy and CPH Theory [PDF]

Vocabulary of CPH Theory [PDF] 

Quantum Electrodynamics and CPH Theory [PDF] 

Summary of Physics Concepts [PDF]

Unification and CPH Theory [PDF] 

Strong Interaction and CPH Theory [PDF]

Biography

Since 1962 I doubted on Newton's laws. I did not accept the infinitive speed and I found un-vivid the laws of gravity and time.

I learned the Einstein's Relativity, thus I found some answers for my questions. But, I had another doubt of Infinitive Mass-Energy. And I wanted to know why light has stable speed?

 


 

 

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013