Contact us




Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید



C reative



  CPH Theory is based  on  Generalized light velocity from energy  into mass.


CPH Theory in Journals



World's best measurement of W boson mass tests Standard Model, Higgs boson limits





World's best measurement of W boson mass tests Standard Model, Higgs boson limits



February 23, 2012 by Tona Kunz


PhysOrg.com) -- Just as firemen use different methods to narrow the location of a person trapped in a building, scientists employ two techniques to find the hiding place of the theorized Higgs particle: direct searches for Higgs interactions and precision measurements of other particles and forces.


The new CDF result for the W boson mass, combined with the world's best value for the top quark mass, restricts the Higgs mass to the green area, requiring it to be less than 145 GeV/c2. Direct searches have narrowed the allowed Higgs mass range to 115-127 GeV/c2.



Today, scientists from the CDF collaboration have unveiled the world's most precise measurement of the W boson , based on data gathered at the. The precision of this measurement surpasses all previous measurements combined and restricts the space in which the should reside according to the Standard Model, the theoretical framework that describes all known  and forces.

The result comes at a pivotal time, just a couple of weeks before physicists from experiments at the Tevatron and the  in CERN plan to present their latest direct-search results in the hunt for the Higgs at the annual conference on Electroweak Interactions and Unified Theories known as Rencontres de Moriond in Italy.

CDF collaborators have measured the mass of the W boson with a precision of 0.02 percent and found the particle's mass to be 80387 +/- 19 MeV/c2. They measured the particle's mass in six different ways, which all match and combine to produce the final result. CDF collaborator and Duke University Professor Ashutosh Kotwal will present the details of the measurement at a special seminar at Fermilab today, and additional information will be posted after the seminar on the CDF website.

Direct Higgs search limits established by the LEP experiments many years ago require the  to be heavier than 114 GeV/c2. The new W mass measurement and the latest precision determination of the mass of the from Fermilab triangulate the location of the Higgs particle and restrict its mass to less than 145 GeV/c2. This is in excellent agreement with the latest direct searches at the LHC, which constrain the Higgs mass to less than 127 GeV/c2, and direct-search limits from the Tevatron, which point to a Higgs mass of less than 156 GeV/c2.


"The result couldn't align more with the direct Higgs search results than this," said CDF co-spokesman Rob Roser. "It indicates that if the Higgs boson exists, it should be right where we are looking."

The DZero collaboration at the Tevatron expects to release its updated W mass result in the next couple of weeks.

The Higgs boson is the last undiscovered component of the Standard Model and theorized to give fundamental particles mass. The upcoming results for the Higgs hunt combined with this new measurement of the W boson mass will provide the strongest test yet of the accuracy of the Standard Model.

If experimenters at the Tevatron and LHC didn't find the Higgs where the W boson mass implies it should be, it would suggest our understanding of nature as embodied in the Standard Model is wrong. It would imply the existence of other undiscovered particles or of undiscovered forces that govern how matter behaves.

"This is one of the most important  of the Tevatron because it serves as a stress test for the  - all sort of new physics models might in principle show up in the W mass measurement," said CDF co-spokesman Giovanni Punzi.

The CDF and DZero results for the W mass likely will be one of the long-lasting scientific legacies of the Tevatron.

Provided by Fermilab (news : web)


Source: Physorg





1 2 3 4 5 6 7 8 9 10  Newest articles














General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

Interesting articles

English Articles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Zero Point Energy and the Dirac Equation [PDF]

Speed of Light and CPH Theory [PDF]

Color Charge/Color Magnet and CPH [PDF]

Sub-Quantum Chromodynamics [PDF]

Effective Nuclear Charge [PDF]

Maxwell's Equations in a Gravitational Field [PDF]

 Realization Hawking - End of Physics by CPH [PDF]

Questions and Answers on CPH Theory [PDF]

Opinions on CPH Theory [PDF]

Analysis of CPH Theory

Definition, Principle and Explanation of CPH Theory [PDF]

Experimental Foundation of CPH Theory [PDF]

Logical Foundation of CPH Theory [PDF]

A New Mechanism of Higgs Bosons in Producing Charge Particles [PDF]

CPH Theory and Newton's Second Law [PDF]

CPH Theory and Special Relativity [PDF]

Properties of CPH [PDF]

Time Function and Work Energy Theorem [PDF]

Time Function and Absolute Black Hole [PDF] 

Thermodynamic Laws, Entropy and CPH Theory [PDF]

Vocabulary of CPH Theory [PDF] 

Quantum Electrodynamics and CPH Theory [PDF] 

Summary of Physics Concepts [PDF]

Unification and CPH Theory [PDF] 

Strong Interaction and CPH Theory [PDF]


Since 1962 I doubted on Newton's laws. I did not accept the infinitive speed and I found un-vivid the laws of gravity and time.

I learned the Einstein's Relativity, thus I found some answers for my questions. But, I had another doubt of Infinitive Mass-Energy. And I wanted to know why light has stable speed?




يکشنبه 1 دي 1392

22 December, 2013 13:27

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013