English

Contact us

Feedback

Persian

Home

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

   

C reative

      Particle

           Higgs

  CPH Theory is based  on  Generalized light velocity from energy  into mass.

 

CPH Theory in Journals

   

 

Higgs Boson Gets New Mass Limit

 

 

 

Higgs Boson Gets New Mass Limit

 

Ashutosh Kotwal and his Fermilab team offer more precise prediction for Higgs boson mass

February 23, 2012

 

The W boson is squeezing in on what the mass of the Higgs can be. Image courtesy of symmetry magazine/plush toys by artist Julie Peasley/photo by Robert Tilden.

 

DURHAM, NC - New, more precise measurements of a particle called the W boson are again suggesting that physicists' prized Higgs boson is lighter than previously predicted.

Using detectors at the Fermi National Accelerator Laboratory in Illinois, Duke physicist Ashutosh Kotwal and his collaborators have made the world's most precise mass measurement of the W boson, a key quantity in the Standard Model -- the theory physicists use to explain the dynamics of subatomic particles.

According to the results of the experiment, the W boson's new mass was measured at 80387 million electron volts divided by the speed of light squared, give or take 19 MeV (80387 +- 19 MeV/c^2), with a precision of 0.02 percent.

"This result significantly improves the world knowledge of the Higgs boson," Kotwal said, explaining that the precise measurement of the mass of the W boson makes a precise prediction for the mass of the Higgs.

Based on the new W boson mass, Kotwal's team has calculated that the Higgs boson mass is roughly 90 GeV, or billion electron volts, with a precision of 30 percent. 

"The best way to think of this is to present the upper limit on the Higgs boson mass with 95 percent probability, which means that there is only one 1 in 20 chance of the Higgs being heavier than this upper limit," Kotwal said. The new upper limit is 145 GeV.

When Kotwal presented his last measurement of the W boson's mass in 2007, it put the upper limit of the Higgs boson mass at 161 GeV. With the new measurement of the W boson mass, the new upper limit of the Higgs has dropped to 145 GeV, "so it is now more likely that the Higgs boson is light," Kotwal said. 

He announced the finding in a talk at Fermilab on Feb. 23 and will submit the results of the experiment for publication in the near future.

Last December, physicists from two experiments at CERN's Large Hadron Collider announced data that hinted the Higgs boson mass was between 115-130 GeV. Kotwal's new W boson mass measurement and predicted Higgs mass within 90-145 GeV suggests that the physicists are narrowing in on the energy region where the Higgs particle may be hiding.

CERN and Fermilab physicists are expected to present their latest direct-search Higgs measurements at the annual conference on Electroweak Interactions and Unified Theories known as Rencontres de Moriond in Italy next month.

"If the Higgs boson is soon discovered and its mass agrees with the precise prediction given by the W boson mass measurement, then the Standard Model will be proven correct once again," Kotwal said "But, if the Higgs boson is not found where it is predicted, then this model will be proven wrong decisively." 

He explained that physicists ultimately want to know whether or not their model of the behavior of fundamental particles is correct. If the model is proven wrong, "we would have learned that there is something really new and more fundamental going on in nature, and this will be a major scientific advance of the last 50 years," Kotwal said.

His team includes Duke graduate student Yu Zeng and post-doctoral researcher Bodhitha Jayatilaka.

 

 

Source: Universe Today


 

 

 

1 2 3 4 5 6 7 8 9 10  Newest articles

 


 

 

 

 

 

 

 

 

 

 

 
 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

Interesting articles

English Articles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Zero Point Energy and the Dirac Equation [PDF]

Speed of Light and CPH Theory [PDF]

Color Charge/Color Magnet and CPH [PDF]

Sub-Quantum Chromodynamics [PDF]

Effective Nuclear Charge [PDF]

Maxwell's Equations in a Gravitational Field [PDF]

 Realization Hawking - End of Physics by CPH [PDF]

Questions and Answers on CPH Theory [PDF]

Opinions on CPH Theory [PDF]

Analysis of CPH Theory

Definition, Principle and Explanation of CPH Theory [PDF]

Experimental Foundation of CPH Theory [PDF]

Logical Foundation of CPH Theory [PDF]

A New Mechanism of Higgs Bosons in Producing Charge Particles [PDF]

CPH Theory and Newton's Second Law [PDF]

CPH Theory and Special Relativity [PDF]

Properties of CPH [PDF]

Time Function and Work Energy Theorem [PDF]

Time Function and Absolute Black Hole [PDF] 

Thermodynamic Laws, Entropy and CPH Theory [PDF]

Vocabulary of CPH Theory [PDF] 

Quantum Electrodynamics and CPH Theory [PDF] 

Summary of Physics Concepts [PDF]

Unification and CPH Theory [PDF] 

Strong Interaction and CPH Theory [PDF]

Biography

Since 1962 I doubted on Newton's laws. I did not accept the infinitive speed and I found un-vivid the laws of gravity and time.

I learned the Einstein's Relativity, thus I found some answers for my questions. But, I had another doubt of Infinitive Mass-Energy. And I wanted to know why light has stable speed?

 


 

 


يکشنبه 1 دي 1392

22 December, 2013 13:27

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013