English

Contact us

Feedback

Persian

Home

Welcome to CPH Theory Siteبه سایت نظریه سی پی اچ خوش آمدید

 

   

C reative

      Particle

           Higgs

  CPH Theory is based  on  Generalized light velocity from energy  into mass.

 

CPH Theory in Journals

   

 

Advanced Quantum Mechanics

 

 

 

Advanced Quantum Mechanics

Full Story PDF  1.58 MB

Download 

 

 

Advanced Quantum Mechanics

Peter S. Riseborough

March 14, 2007

Contents

1 Introduction 4

2 Quantum Mechanics of a Single Photon 5

2.1 Rotations and Intrinsic Spin . . . . . . . . . . . . . . . . . . . . . 6

2.2 Massless Particles with Spin Zero . . . . . . . . . . . . . . . . . . 10

2.3 Massless Particles with Spin One . . . . . . . . . . . . . . . . . . 11

3 Maxwell’s Equations 13

3.1 Vector and Scalar Potentials . . . . . . . . . . . . . . . . . . . . . 14

3.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Relativistic Formulation of Electrodynamics 18

4.1 Lorentz Scalars and Vectors . . . . . . . . . . . . . . . . . . . . . 19

4.2 Covariant and Contravariant Derivatives . . . . . . . . . . . . . . 20

4.3 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Invariant Form of Maxwell’s Equations . . . . . . . . . . . . . . . 24

5 The Simplest Classical Field Theory 27

5.1 The Continuum Limit . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Normal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Rules of Canonical Quantization . . . . . . . . . . . . . . . . . . 36

5.4 The joys of the number operator! . . . . . . . . . . . . . . . . . . 38

5.5 The Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Classical Field Theory 39

6.1 The Hamiltonian Formulation . . . . . . . . . . . . . . . . . . . . 41

6.2 Symmetry and Conservation Laws . . . . . . . . . . . . . . . . . 42

6.2.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . 42

6.2.2 Noether Charges . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . 45

6.3 The Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . 46

1

7 The Electromagnetic Lagrangian 49

7.1 Conservation Laws for Electromagnetic Fields . . . . . . . . . . . 53

7.2 Massive Spin-One Particles . . . . . . . . . . . . . . . . . . . . . 58

8 Symmetry Breaking and Mass Generation 59

8.1 Symmetry Breaking and Goldstone Bosons . . . . . . . . . . . . 59

8.2 The Kibble-Higgs Mechanism . . . . . . . . . . . . . . . . . . . . 61

9 Quantization of the Electromagnetic Field 63

9.1 The Lagrangian and Hamiltonian Density . . . . . . . . . . . . . 65

9.2 Quantizing the Normal Modes . . . . . . . . . . . . . . . . . . . . 67

9.2.1 The Energy of the Field . . . . . . . . . . . . . . . . . . . 69

9.2.2 The Electromagnetic Field . . . . . . . . . . . . . . . . . 70

9.2.3 The Momentum of the Field . . . . . . . . . . . . . . . . 72

9.2.4 The Angular Momentum of the Field . . . . . . . . . . . . 74

9.3 Uncertainty Relations . . . . . . . . . . . . . . . . . . . . . . . . 79

9.4 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.4.1 The Phase-Number Uncertainty Relation . . . . . . . . . 86

9.4.2 Argand Representation of Coherent States . . . . . . . . . 87

10 Non-Relativistic Quantum Electrodynamics 88

10.1 Emission and Absorption of Photons . . . . . . . . . . . . . . . . 91

10.1.1 The Emission of Radiation . . . . . . . . . . . . . . . . . 91

10.1.2 The Dipole Approximation . . . . . . . . . . . . . . . . . 93

10.1.3 Electric Dipole Radiation Selection Rules . . . . . . . . . 97

10.1.4 Angular Distribution of Dipole Radiation . . . . . . . . . 106

10.1.5 The Decay Rate from Dipole Transitions. . . . . . . . . . 112

10.1.6 The 2p ! 1s Electric Dipole Transition Rate. . . . . . . . 114

10.1.7 Electric Quadrupole and Magnetic Dipole Transitions. . . 117

10.1.8 The 3d ! 1s Electric Quadrupole Transition Rate . . . . 121

10.1.9 Two-photon decay of the 2s state of Hydrogen. . . . . . . 124

10.1.10 The Absorption of Radiation . . . . . . . . . . . . . . . . 131

10.1.11 The Photoelectric Effect . . . . . . . . . . . . . . . . . . . 136

10.1.12Impossibility of absorption of photons by free-electrons. . 139

10.2 Scattering of Light . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.2.1 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . 145

10.2.2 Thompson Scattering . . . . . . . . . . . . . . . . . . . . 148

10.2.3 Raman Scattering . . . . . . . . . . . . . . . . . . . . . . 152

10.2.4 Radiation Damping and Resonance Fluorescence . . . . . 153

10.2.5 Natural Line-Widths . . . . . . . . . . . . . . . . . . . . . 156

10.3 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.3.1 The Casimir Effect . . . . . . . . . . . . . . . . . . . . . . 159

10.3.2 The Lamb Shift . . . . . . . . . . . . . . . . . . . . . . . . 164

10.3.3 The Self-Energy of a Free Electron . . . . . . . . . . . . . 166

10.3.4 The Self-Energy of a Bound Electron . . . . . . . . . . . . 169

10.3.5 Brehmstrahlung . . . . . . . . . . . . . . . . . . . . . . . 173

 

11 The Dirac Equation 179

11.1 Conservation of Probability . . . . . . . . . . . . . . . . . . . . . 183

11.2 Covariant Form of the Dirac Equation . . . . . . . . . . . . . . . 185

11.3 The Field Free Solution . . . . . . . . . . . . . . . . . . . . . . . 187

11.4 Coupling to Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.4.1 Mott Scattering . . . . . . . . . . . . . . . . . . . . . . . . 194

11.4.2 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . 197

11.4.3 The Gordon Decomposition . . . . . . . . . . . . . . . . . 198

11.5 Lorentz Covariance of the Dirac Equation . . . . . . . . . . . . . 202

11.6 The Non-Relativistic Limit . . . . . . . . . . . . . . . . . . . . . 202

11.7 Conservation of Angular Momentum . . . . . . . . . . . . . . . . 205

11.8 Conservation of Parity . . . . . . . . . . . . . . . . . . . . . . . . 207

11.9 The Radial Dirac Equation . . . . . . . . . . . . . . . . . . . . . 210

11.9.1 The Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . 216

11.9.2 A Particle in a Spherical Square Well . . . . . . . . . . . 224

11.9.3 The MIT Bag Model . . . . . . . . . . . . . . . . . . . . . 229

11.9.4 The Temple Meson Model . . . . . . . . . . . . . . . . . . 232

11.10An Electron in a Uniform Magnetic Field . . . . . . . . . . . . . 234

11.11Symmetry Considerations . . . . . . . . . . . . . . . . . . . . . . 236

11.12The Limit of Zero Mass . . . . . . . . . . . . . . . . . . . . . . . 236

11.13Classical Dirac Field Theory . . . . . . . . . . . . . . . . . . . . . 239

11.13.1 Chiral Gauge Symmetry . . . . . . . . . . . . . . . . . . . 243

11.14Hole Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

11.14.1Compton Scattering . . . . . . . . . . . . . . . . . . . . . 248

11.14.2 Charge Conjugation . . . . . . . . . . . . . . . . . . . . . 252

Charge Conjugation . . . . . . . . . . . . . . . . . . . . . 252

12 The Many-Particle Dirac Field 255

12.1 Second Quantization of Fermions . . . . . . . . . . . . . . . . . . 255

12.2 Quantizing the Dirac Field . . . . . . . . . . . . . . . . . . . . . 255

12.3 The Connection between Spin and Statics . . . . . . . . . . . . . 259

13 Massive Gauge Field Theory 260

13.1 The Gauge Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 260

13.2 The Coupling to the Gauge Field . . . . . . . . . . . . . . . . . . 262

13.3 The Free Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . 263

13.4 Breaking the Symmetry . . . . . . . . . . . . . . . . . . . . . . . 2

 

 

 

 

1 2 3 4 5 6 7 8 9 10  Newest articles

 


 

 

 

 

 

 

 

 

 

 

 
 

LEIBNITZ'S MONADS & JAVADI'S CPH

General Science Journal

World Science Database

Hadronic Journal

National Research Council Canada

Journal of Nuclear and Particle Physics

Scientific Journal of Pure and Applied Science

Sub quantum space and interactions from photon to fermions and bosons

Interesting articles

English Articles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Faster Than Light 

Light that travels…faster than light!

Before the Big Bang

Structure of Charge Particles

Move Structure of Photon

Structure of Charge Particles

Zero Point Energy and the Dirac Equation [PDF]

Speed of Light and CPH Theory [PDF]

Color Charge/Color Magnet and CPH [PDF]

Sub-Quantum Chromodynamics [PDF]

Effective Nuclear Charge [PDF]

Maxwell's Equations in a Gravitational Field [PDF]

 Realization Hawking - End of Physics by CPH [PDF]

Questions and Answers on CPH Theory [PDF]

Opinions on CPH Theory [PDF]

Analysis of CPH Theory

Definition, Principle and Explanation of CPH Theory [PDF]

Experimental Foundation of CPH Theory [PDF]

Logical Foundation of CPH Theory [PDF]

A New Mechanism of Higgs Bosons in Producing Charge Particles [PDF]

CPH Theory and Newton's Second Law [PDF]

CPH Theory and Special Relativity [PDF]

Properties of CPH [PDF]

Time Function and Work Energy Theorem [PDF]

Time Function and Absolute Black Hole [PDF] 

Thermodynamic Laws, Entropy and CPH Theory [PDF]

Vocabulary of CPH Theory [PDF] 

Quantum Electrodynamics and CPH Theory [PDF] 

Summary of Physics Concepts [PDF]

Unification and CPH Theory [PDF] 

Strong Interaction and CPH Theory [PDF]

Biography

Since 1962 I doubted on Newton's laws. I did not accept the infinitive speed and I found un-vivid the laws of gravity and time.

I learned the Einstein's Relativity, thus I found some answers for my questions. But, I had another doubt of Infinitive Mass-Energy. And I wanted to know why light has stable speed?

 


 

 

free hit counters

Copyright © 2013 CPH Theory

Last modified 12/22/2013