Advanced Quantum Mechanics
Peter S. Riseborough
March 14, 2007
Contents
1 Introduction 4
2 Quantum Mechanics of a Single
Photon 5
2.1 Rotations and Intrinsic Spin
. . . . . . . . . . . . . . . . . . . . . 6
2.2 Massless Particles with Spin
Zero . . . . . . . . . . . . . . . . . . 10
2.3 Massless Particles with Spin
One . . . . . . . . . . . . . . . . . . 11
3 Maxwell’s Equations 13
3.1 Vector and Scalar Potentials
. . . . . . . . . . . . . . . . . . . . . 14
3.2 Gauge Invariance . . . . . .
. . . . . . . . . . . . . . . . . . . . . 15
4 Relativistic Formulation of
Electrodynamics 18
4.1 Lorentz Scalars and Vectors .
. . . . . . . . . . . . . . . . . . . . 19
4.2 Covariant and Contravariant
Derivatives . . . . . . . . . . . . . . 20
4.3 Lorentz Transformations . . .
. . . . . . . . . . . . . . . . . . . . 23
4.4 Invariant Form of Maxwell’s
Equations . . . . . . . . . . . . . . . 24
5 The Simplest Classical Field
Theory 27
5.1 The Continuum Limit . . . . .
. . . . . . . . . . . . . . . . . . . 32
5.2 Normal Modes . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 33
5.3 Rules of Canonical
Quantization . . . . . . . . . . . . . . . . . . 36
5.4 The joys of the number
operator! . . . . . . . . . . . . . . . . . . 38
5.5 The Classical Limit . . . . .
. . . . . . . . . . . . . . . . . . . . . 38
6 Classical Field Theory 39
6.1 The Hamiltonian Formulation .
. . . . . . . . . . . . . . . . . . . 41
6.2 Symmetry and Conservation
Laws . . . . . . . . . . . . . . . . . 42
6.2.1 Conservation Laws . . . . .
. . . . . . . . . . . . . . . . . 42
6.2.2 Noether Charges . . . . . .
. . . . . . . . . . . . . . . . . 44
6.2.3 Noether’s Theorem . . . . .
. . . . . . . . . . . . . . . . . 45
6.3 The Energy-Momentum Tensor .
. . . . . . . . . . . . . . . . . . 46
1
7 The Electromagnetic Lagrangian
49
7.1 Conservation Laws for
Electromagnetic Fields . . . . . . . . . . . 53
7.2 Massive Spin-One Particles .
. . . . . . . . . . . . . . . . . . . . 58
8 Symmetry Breaking and Mass
Generation 59
8.1 Symmetry Breaking and
Goldstone Bosons . . . . . . . . . . . . 59
8.2 The Kibble-Higgs Mechanism .
. . . . . . . . . . . . . . . . . . . 61
9 Quantization of the
Electromagnetic Field 63
9.1 The Lagrangian and
Hamiltonian Density . . . . . . . . . . . . . 65
9.2 Quantizing the Normal Modes .
. . . . . . . . . . . . . . . . . . . 67
9.2.1 The Energy of the Field . .
. . . . . . . . . . . . . . . . . 69
9.2.2 The Electromagnetic Field .
. . . . . . . . . . . . . . . . 70
9.2.3 The Momentum of the Field .
. . . . . . . . . . . . . . . 72
9.2.4 The Angular Momentum of the
Field . . . . . . . . . . . . 74
9.3 Uncertainty Relations . . . .
. . . . . . . . . . . . . . . . . . . . 79
9.4 Coherent States . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 81
9.4.1 The Phase-Number
Uncertainty Relation . . . . . . . . . 86
9.4.2 Argand Representation of
Coherent States . . . . . . . . . 87
10 Non-Relativistic Quantum
Electrodynamics 88
10.1 Emission and Absorption of
Photons . . . . . . . . . . . . . . . . 91
10.1.1 The Emission of Radiation
. . . . . . . . . . . . . . . . . 91
10.1.2 The Dipole Approximation .
. . . . . . . . . . . . . . . . 93
10.1.3 Electric Dipole Radiation
Selection Rules . . . . . . . . . 97
10.1.4 Angular Distribution of
Dipole Radiation . . . . . . . . . 106
10.1.5 The Decay Rate from Dipole
Transitions. . . . . . . . . . 112
10.1.6 The 2p ! 1s Electric
Dipole Transition Rate. . . . . . . . 114
10.1.7 Electric Quadrupole and
Magnetic Dipole Transitions. . . 117
10.1.8 The 3d ! 1s Electric
Quadrupole Transition Rate . . . . 121
10.1.9 Two-photon decay of the 2s state
of Hydrogen. . . . . . . 124
10.1.10 The Absorption of
Radiation . . . . . . . . . . . . . . . . 131
10.1.11 The Photoelectric Effect
. . . . . . . . . . . . . . . . . . . 136
10.1.12Impossibility of
absorption of photons by free-electrons. . 139
10.2 Scattering of Light . . . .
. . . . . . . . . . . . . . . . . . . . . . 141
10.2.1 Rayleigh Scattering . . .
. . . . . . . . . . . . . . . . . . 145
10.2.2 Thompson Scattering . . .
. . . . . . . . . . . . . . . . . 148
10.2.3 Raman Scattering . . . . .
. . . . . . . . . . . . . . . . . 152
10.2.4 Radiation Damping and
Resonance Fluorescence . . . . . 153
10.2.5 Natural Line-Widths . . .
. . . . . . . . . . . . . . . . . . 156
10.3 Renormalization . . . . . .
. . . . . . . . . . . . . . . . . . . . . 158
10.3.1 The Casimir Effect . . . .
. . . . . . . . . . . . . . . . . . 159
10.3.2 The Lamb Shift . . . . . .
. . . . . . . . . . . . . . . . . . 164
10.3.3 The Self-Energy of a Free
Electron . . . . . . . . . . . . . 166
10.3.4 The Self-Energy of a Bound
Electron . . . . . . . . . . . . 169
10.3.5 Brehmstrahlung . . . . . .
. . . . . . . . . . . . . . . . . 173
11 The Dirac Equation 179
11.1 Conservation of Probability
. . . . . . . . . . . . . . . . . . . . . 183
11.2 Covariant Form of the Dirac
Equation . . . . . . . . . . . . . . . 185
11.3 The Field Free Solution . .
. . . . . . . . . . . . . . . . . . . . . 187
11.4 Coupling to Fields . . . . .
. . . . . . . . . . . . . . . . . . . . . 193
11.4.1 Mott Scattering . . . . .
. . . . . . . . . . . . . . . . . . . 194
11.4.2 Maxwell’s Equations . . .
. . . . . . . . . . . . . . . . . . 197
11.4.3 The Gordon Decomposition .
. . . . . . . . . . . . . . . . 198
11.5 Lorentz Covariance of the
Dirac Equation . . . . . . . . . . . . . 202
11.6 The Non-Relativistic Limit .
. . . . . . . . . . . . . . . . . . . . 202
11.7 Conservation of Angular
Momentum . . . . . . . . . . . . . . . . 205
11.8 Conservation of Parity . . .
. . . . . . . . . . . . . . . . . . . . . 207
11.9 The Radial Dirac Equation .
. . . . . . . . . . . . . . . . . . . . 210
11.9.1 The Hydrogen Atom . . . .
. . . . . . . . . . . . . . . . . 216
11.9.2 A Particle in a Spherical
Square Well . . . . . . . . . . . 224
11.9.3 The MIT Bag Model . . . .
. . . . . . . . . . . . . . . . . 229
11.9.4 The Temple Meson Model . .
. . . . . . . . . . . . . . . . 232
11.10An Electron in a Uniform
Magnetic Field . . . . . . . . . . . . . 234
11.11Symmetry Considerations . .
. . . . . . . . . . . . . . . . . . . . 236
11.12The Limit of Zero Mass . . .
. . . . . . . . . . . . . . . . . . . . 236
11.13Classical Dirac Field Theory
. . . . . . . . . . . . . . . . . . . . . 239
11.13.1 Chiral Gauge Symmetry . .
. . . . . . . . . . . . . . . . . 243
11.14Hole Theory . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 245
11.14.1Compton Scattering . . . .
. . . . . . . . . . . . . . . . . 248
11.14.2 Charge Conjugation . . .
. . . . . . . . . . . . . . . . . . 252
Charge Conjugation . . . . . . .
. . . . . . . . . . . . . . 252
12 The Many-Particle Dirac Field
255
12.1 Second Quantization of
Fermions . . . . . . . . . . . . . . . . . . 255
12.2 Quantizing the Dirac Field .
. . . . . . . . . . . . . . . . . . . . 255
12.3 The Connection between Spin
and Statics . . . . . . . . . . . . . 259
13 Massive Gauge Field Theory 260
13.1 The Gauge Symmetry . . . . .
. . . . . . . . . . . . . . . . . . . 260
13.2 The Coupling to the Gauge
Field . . . . . . . . . . . . . . . . . . 262
13.3 The Free Gauge Fields . . .
. . . . . . . . . . . . . . . . . . . . . 263
13.4 Breaking the Symmetry . . .
. . . . . . . . . . . . . . . . . . . . 2