WELCOME

                        free hit counters 
 

خانه       اخبار    مقالات

English

نظریه سی. پی. اچ
سرفصل ها
گروه فارسی
گروه انگلیسی
سایتهای مرتبط
پیوندها
 تماس با ما

 
    
 

اگر همواره مانند گذشته بينديشيد، هميشه همان چيزهايي را به‌دست مي‌آوريد كه تا بحال كسب كرده‌ايد

 فاينمن

 

کتاب الکترونیکی ماورای کوانتوم

 

فصل دو

 فیزیک  نوین

 

 

 

 

 

 

مقدمه

تجربه های اواخر قرن نوزدهم نشان داد که مکانیک کلاسیک توان توجیه رفتار ذرات را ندارد. علاوه بر آن نسبیت گالیله ای نیز  در پاسخگویی به رفتار نور ناکارا است. هرچند امروزه نور نیز چزئی از مکانیک ذرات کوانتومی محسوب می شود، اما در اواخر قرن نوزدهم این دو پدیده بطور مجزا مورد توجه قرار می گرفت. در آغاز قرن بیستم دو دیدگاه ظاهراً مجزا یکی توسط ماکس پلانک و دیگری توسط انیشتین در مورد امواج الکترومغناطیسی مطرح شد. پلانک گسستگی (کوانتومی) آنرا مورد بحث قرار داد و انیشتین سرعت آن را. بدین ترتیب مکانیک کوانتوم و نسبیت پا به عرصه ی ظهور نهادند که شالوده فیزیک نوین را تشکیل دادند. سرانجام دیراک این دو را با هم ترکیب کرد و مکانیک کوانتوم نسبیتی را به وجود آورد

 

اندیشه های پلانک

تا پايان قرن نوزدهم، فيزيك دان ها بر این باور استوار بودند كه توانایی فيزيك كلاسيك برای کشف تمام دانستنی ها قطعی است و حل مسائل صرفاً محتاج زمان و کوشش کافی خواهد بود. اما علی رغم تلاشهای پیگیر گروه کثیری از دانشمندان برجستۀ آن زمان، هیچکدام از فرضیات پیشنهادی توفیقی در ارائۀ یک منحنی شدت - فرکانس که منطبق با نتایج آزمایش باشد به دست نیاورد. به طور خلاصه، هیچیک از محاسبات مبتنی بر تشعشعات اتمی در امتداد یک محور ممتد فرکانس قادر به عرضۀ منحنی صحیح نشد.

درسال 1900، ماكس پلانك فيزيك دان آلماني اعلام کرد كه با فرض يك تشعشع الکترومغناطیسی خفیف (در طول موج يا در فركانس)، منحني فرضی بدست آمده كاملاً با منحني ناشی از آزمايش منطبق خواهد بود. به عبارت دیگر، انرژی اتمی تابان E با فرمول زیر تعریف می شود:

 

E = n.h.f

 n عدد صحیح است

 h ثابت پلانک

  6,62 x 10-27 s.erg =

 f فرکانس نوسانات اتمی

اين رويداد شروع عصر مكانيك كوانتومي را رقم زد. 

به دليل اینکه پلانك موفق به تعريف انعكاس جسم سياه شد جايزه نوبل فيزيك را درسال 1918 به خود اختصاص داد. قسمتي از توضيحات وي در خطابه اش که هنگام دریافت جایزه در دوم ژوئن 1920 قرائت کرد، چنين است:

«تلاش من در طول سال ها حل مسئلۀ تقسيم انرژي در طيف معمول تابش حرارت بود. پس از اینکه گوستاو كيرشهوف (1887-1824) نشان داد كه وضعيت تشعشعات حرارتی، در درون یک محفظه که جدارۀ آن متشکل از ماده ای باشد ساطع کننده و دریافت کنندۀ تشعشعات و واجد دماي يكنواخت، به هیچ وجه وابسته به جنس جداره نیست، وجود یک ارتباط کلی میان میزان حرارت با طول موج – بدون هیچ دخالتی از نظر جنس ماده ی تشکیل دهنده ی جداره – آشکار شد. کشف این ارتباط شگفت انگیز، امید فهم عمیق تری در مورد رابطه ی انرژی با حرارت، که در واقع مسئله ی اساسی ترمودینامیک را و کلّاً فیزیک مولکولی است، به وجود می آورد. ...

من در آن زمان، با امیدی، که امروز قطعاً با تبسمی از جانب شنونده بسیار ساده لوحانه انگاشته خواهد شد، می اندیشیدم که در صورتی که قوانین ترمودینامیک کلاسیک را به گونه ای کلی طرح کنیم و از فرضیه های جزئی پرهیز کنیم، بخش عمدۀ موضوع مورد نظر را در محیط فهم خود در خواهیم آورد و بدین ترتیب به مقصود خود خواهیم رسید. ...

به موازات این طرح، طرح های دیگری نیز فقدان بخش مهمی که به گسستی اساسی در زنجیره ی تحلیل و فهم کلی پایه های مسئله را منجر می شد، روز به روز آشکارتر می نمودند.

پس از به دست آوردن فرمول ریاضی جدیدی برای تعریف تابش، وقت خود را صرف توضیح آن به گونه ای که با واقعیت فیزیکی تطبیق کند کردم؛ حل این مشکل طبیعتاً سیر فکری مرا تا بررسی ارتباط موجود میان تئوری بی نظمی یا آنتروپی و تئوری احتمالات پیش برد و نتایجی که از این گذر به دست آمد با عقاید بولتزمن هماهنگی کامل داشت. سرانجام پس از چند هفته كه سخت ترين دوره ی كاري زندگيم بود، نور در ظلمت تابيدن گرفت و دورنمایي غير قابل تصور در برابر دیدگانم باز شد. ...

 چون [ وجود یک ثابت درقانون تشعشع] نمايانگر حاصل انرژي در زمان است، ... من آنرا به عنوان «كوانتوم اوليه كنش» تعريف كردم. ...

مادامی که کوانتم مورد نظر بینهایت کوچک در نظر گرفته می شد ... مشکلی نبود؛ ولی بطور کلی کمبودهای زیادی در گوشه و کنار تئوری ظاهر می شد و هر چه ارتعاشات ضعیفتر و سریعتر بودند این اختلاف بیشتر جلوه می کرد. طولی نکشید که ناکامی هر گونه تلاش آتی برای جبران این کاستی ها بر من آشکار شد. به نظر می آمد که یا کوانتوم کنش یک کمّیّت خیالی بیش نیست، و در این صورت استنتاج قانون تابش در مجموع جز یک برداشت مجازی و یک بازی بی محتوی مبتنی بر فرمول های بی معنی نبوده، و یا قانون تابش بر اساس یک مفهوم فیزیکی واقعی بنا شده، كه در اين صورت كوانتوم كنش بايد نقش مهم و اساسي اي را در فيزيك ايفا كند؛ امری که کاملا نوین بود و تا کنون از آن آگاهی ای نداشتیم، و به ناچار ما را به مرور مجدد تمامی مفهومات فیزیکی مان که بر مبنای حساب انفینیتزیمال (بسیار کوچک) لایپنیتز و نيوتن  استوار شده بود و حکم به پذیرش زنجیره ی اتصال علل به معلولات می کرد، وادار می نمود. آزمایشات رأی به صحت فرض دوم صادر کردند.»

در جایی دیگر، پلانک می گوید: 

«بلافاصله می کوشیدم تا کوانتم ابتدایی کنش را در قالب تئوری کلاسیک جای بدهم، اما علی رغم تمام کوشش هایم، ثابتی که یافته بودم در مقابل تمام کوشش هایم به گونه ی انعطاف ناپذیری مقاومت نشان داد... سعی بر وارد کردن کوانتوم ابتدائی کنش در تئوری کلاسیک، به مدت چند سال کوشش های بی حاصل مرا به خود اختصاص داد که زحمات زیادی را مصروف آن کردم.»

با اينكه منحني فرضی پلانك با منحني ای که عملا از آزمايشات به دست می آمد تطبیق كامل داشت، متأسفانه، براي مدّت حداقل 5 سال، فرضیه ی او مبتنی بر ماهیّت خفیف تابش اتمی، تا سال1905   و چاپ مقاله ی اینشتین و شرح آن بر فرضیه ی تأثیرات فوتوالکتریک، استقبال چندانی نیافت. با این حال، تئوری پلانک که وجود دو سطح انرژی اتمی خفیف را برای توضیح تشعشع جرم سیاه بیان می کرد، و همچنین موضوعی که او در رابطه با قابل شمارش دانستن انرژی متبادل این اتمها پیشنهاد کرد آغازی بود برای عصر مکانیک کوانتیک.

 اندیشه های اینشتین

در اواخر قرن نوزدهم دانشمندان تصور مي كردند به توصيـف كامل گيتي نزديك شده اند. آنان مي پنداشتند كه فضا در همه جا با واسطه اي پيوسته به نام اتر پر شده است. پرتوهاي نور و علائم راديويي، امواجي در اتر بودند، درست همان گونه كه صوت، امواج فشار در هواست. تنها چيزي كه براي تكميل نظريه لازم بود، اندازه گيري دقيق ويژگي هاي كشساني اتر بود؛ پس از تعيين اين ويژگي ها، همه چيز در جاي خود قرار مي گرفت.اما به زودي و به تدريج، مغايرت هايي با انديشه اتر که تصور می شد همه جا هست، پديدار شد. انتظار مي رفت نور در اتر با سرعت ثابتي حركت نمــــايد. مثلاً، اگر در جهت نور حركت مي كرديد، انتظار داشتيد سرعت آن كم تر به نظر برسد، و اگر در خلاف جهت نور حركت مي كرديد، انتظار داشتيد سرعت آن بيشتر به نظر آيد. اما به رغم آزمايش هاي متعدد، تلاش به منظور يافتن مدركي براي تغيير سرعت نور در اثر حركت در اتر، ناكام ماند

 دقيق ترين آزمايش ها توسط آلبرت مايكلسون و ادوارد مورلي در سال 1887 در مؤسسه كيس كليولند در اوهايو انجام گرديد. آن ها سرعت نور را در دو باريكه كه نسبت به يكديگر داراي زاويه قائمه بودند، مقايسه نمودند. آن ها چنيـــن استدلال مي كردند كه زمين با چرخش به دور محور خود و گردش به گرد خورشيد، از ميان اتر مي گذرد و سرعت نور در اين دو باريكه بايد متفاوت باشد. اما مايكلسون و مورلي اختلاف روزانه يا سالانه اي ميان دو باريكه نور نيافتند. گويي نور، در هر جهتي كه حركت كني، نسبت به تو با سرعتي ثابت حركت مي كند
 جرج فيتزجرالد و ديويد لورنتز، نخستين كساني بودند كه گفتند اجسامي كه در ميان اتر حركت مي كنند، منقبض مي شوند و ساعت ها كُند مي گردند. اين انقباض و كندشدگي (اتساع) چنان است كه هركسي به هر نحو كه نسبت به اتر، كه فيتزجرالد و لورنتز آن را ماده اي واقعي مي پنداشتند، حركت كند، سرعت ثابتي را براي نور اندازه گيري خواهد نمود
 اما، اين آلبرت اينشتاين بود كه اتر را كناري نهاد و مسئله سرعت نور را يك بار براي هميشه حل كرد. او، در ژوئن 1905، يكي از سه مقاله اي را نوشت كه وي را به عنوان يكي از دانشمندان برجسته جهان معرفي كرد- و در اين راستا دو انقلاب مفهومي را آغاز نمود كه فهم ما را از زمان، فضا و واقعيت تغيير دادند
 در مقاله 1905، اينشتاين نوشت حال كه نمي توان آشكار ساخت كه آيا در اتر حركت مي كنيم يا خير، اصلاً مفهوم اتر زيادي است. در مقابل، اينشتاين از اين اصل آغاز كرد كه قوانين علم بايد به ديده همه ناظراني كه آزادانه حركت مي كنند، يكسان بنمايند. به ويژه، ناظران به هر شيوه اي كه حركت كنند، بايد همه يك سرعت را براي نور اندازه گيري نمايند
 اين، مستلزم رها كردن اين انديشه بود كه كميتي عام موسوم به زمان وجود دارد كه همه ساعت ها اندازه مي گيرند. هر كس، زمان شخصي خود را داشت. ساعت هاي دو نفر در صورتي با هم هماهنگ بودند كه آن دو نسبت به يكديگر در حال سكون باشند و نه اين كه حركت نمايند. اين نكته با چند آزمايش تأييد شد، از جمله آزمايش با ساعت بسيار دقيقي كه دور جهان گردانده شد و سپس با ساعتي كه در محل ساكن مانده بود، مقايسه گرديد. اگر مي خواستيد بيشتر زندگي كنيد، مي توانستيد به سوي شرق پرواز كنيد تا سرعت هواپيما به سرعت چرخش زمين افزوده شود. اما خوردن غذاي هواپيما همان و از ميان رفتن آن كسر بسيار كوچكي از ثانيه كه به عمرتان افزوده مي شد، همان
 اصل موضوعه اينشتاين كه قوانين طبيعت بايد به ديده تمام ناظراني كه در حركت آزاد هستند، يكسان بنمايد، مبناي نظريه نسبيت بود كه از آن رو چنيــــن ناميده مي شود كه حكايت از آن دارد كه فقط حركت نسبي مهم است. زيبايي و سادگي آن براي بسياري از دانشمندان و فيلسوفان متقاعدكننده بود. اما مخالفت هاي بسياري هم به جاي مانده بود. اينشتاين دو مطلق علم قرن نوزدهم را واژگون كرده بود: سكون مطلق كه با اتر نمايش داده مي شد و زمان مطلق يا عامي كه تمام ساعت ها اندازه گيري مي نمودند. مردم مي پرسيدند آيا اين بدان معناست كه معيار اخلاقي مطلقي وجود ندارد، كه همه چيز نسبي است؟
 اين ناراحتي در دهه 1920 و 1930 ادامه يافت. هنگامي كه در سال 1921 جايزه نوبل به اينشتاين داده شد، اين امر به دليل كار مهم- اما با معيارهاي اينشتاين، جزئيِ- ديگري بود كه در سال 1905 انجام داده بود. به نسبيت، كه تصور مي رفت بسيار بحث برانگيز است، اشاره اي نشد. هنوز هم عده ای اعتقاد دارند كه اينشتاين اشتباه كرده است. با اين همه، اكنون، جامعه علمي نظريه نسبيت را به طور كامل پذيرفته است و پيش بيني هاي آن در كاربردهاي بيشمار تصديق شده اند
 يكي از نتايج مهم نسبيت، رابطه ميان جرم و انرژي است. اين اصل اينشتاين كه سرعت نور بايد به ديد همه يكسان باشد، نشان مي داد كه هيچ چيز نمي تواند از نور سريع تر حركت نمايد. آن چه روي مي دهد اين است كه با مصرف انرژي براي شتاب دادن به ذره يا سفينه، جرم شيء افزايش مي يابد و شتاب بيشتر دادن به آن را دشوارتر مي سازد. شتاب دادن به ذره تا سرعت نور ناممكن است زيرا به مقداري نامتناهي انرژي نياز دارد. هم ارزي جرم و انرژي به اختصار در معادله مشهور اينشتاين،

E=mc2

 

 نشان داده مي شود، كه شايد تنها معادله فيزيك باشد كه حتی مردم كوچه و خيابان هم آن را مي دانند. از جمله نتايج اين قانون آن است كه با شكافت هسته اتم ارانيوم به دو هسته با مجموعِ جرمي كه اندكي كمتر است، مقدار زيادي انرژي رها مي شود
 هرچند نظريه نسبيت به خوبي در چارچوبِ قوانين حاكم بر الكتريسيته و مغناطيس قرار مي گرفت، اما با قانون گرانش نيوتن سازگار نبود. اين قانون مي گفت اگر توزيع ماده را در يك منطقه از فضا تغيير دهيد، تغيير در ميدان گرانشي در هرجاي ديگري در گيتي بلافاصله احساس خواهد شد. اين نه تنها بدان معنا بود كه مي توانيد علائمي با سرعتي بيش از سرعت نور ارسال كنيد (امري كه نسبيت منع مي كرد)، بلكه نيازمند زمان مطلق يا عامي نيز بود كه نسبيت آن را به نفع زمان شخصي يا نسبيتي كنار گذاشته بود
 اينشتاين، در سال 1907 كه هنوز در اداره ثبت اختراعات برن بود، از اين دشواري آگاهي داشت، اما تا سال 1911 كه به دانشگاه آلماني پراگ آمد، تفكر جدي در باره اين مسئله را آغاز نكرده بود. او دريافت كه ميان شتاب و ميدان گرانشي رابطه نزديكي وجود دارد. كسي كه در اتاقكي بسته نشسته است، نمي تواند بگويد آيا در ميدان گرانشي زمين در حال ســـكون است، يا موشكي در فضاي آزاد به او شتاب مي دهد. اگر زمين تخت بود هم مي توانستيد بگوييد سيب به دليل گرانش روي سر نيوتن افتاد و هم مي توانستيد بگوييد سر نيوتن به سيب برخورد كرد، زيرا او و سطح زمين به سوي بالا شتاب مي گرفتند. اما، به نظر نمي رسد كه اين هم ارزي ميان شتاب و گرانش براي زمين كروي چندان مفيد باشد؛ مردم طرف ديگر جهان مي بايست در جهت مخالف شتاب بگيرند، اما در فاصله ثابتي نسبت به ما باقي بمانند
 اينشتاين با بازگشت به زوريخ در سال 1912، با توفاني مغزي روبرو گرديد. او دريافت اگر در هندسة واقعيت انعطافي وجود داشته باشد، ممكن است هم ارزي شتاب و گرانش مفيد باشد. اگر جا-گاه -- (فضا-زمان) چيزي كه اينشتاين ابداع نموده بود تا سه بُعد آشناي زمان را با بُعد چهارم يعني زمان، در هم آميزد-- خميده بود و نه آن گونه كه تصور مي شد، تخت، چه؟ تصور وي اين بود كه جرم و انرژي جا-گاه را به شيوه اي كه هنوز مي بايست آن را تعيين نمايد، خميده مي سازند. اشيائي مانند سيب و سياره تلاش مي كنند در جا-گاه در مسير مستقيم حركت نمايند، اما چنين مي نمايد كه ميدان گرانشي مسير آن ها را خميده مي سازد، زيرا جا-گاه خميده است
 اينشتاين با كمك دوست خود. مارسل گروسمان، نظريه فضاها و رويه هاي خميده را مطالعه كرد كه برنارد ريمان چونان بخشي از رياضيات انتزاعي و بدون تصور اين كه به جهان واقعي ربطي داشته باشد، پديد آورده بود. در 1913، اينشتاين و گروسمان مقاله اي نوشتند و در آن اين انديشه را مطرح ساختند كه ما نيروهاي گرانشي را چونان نِمود اين حقيقت مي دانيم كه جا-گاه خميده است. اما به دليل اشتباه اينشتاين كه انسان بود (و جايزالخطا) نتوانستند معادلاتي را بيابند كه انحناي جا-گاه را به جرم و انرژي درون آن مرتبط سازد
 اينشتاين در برلين، به دور از مسائل داخلي و عمدتاً فارغ از جنگ، به كار ادامه داد تا سرانجام در نوامبر 1915، معادلات صحيح را يافت. اينشتاين در بازديد از دانشگاه گوتينگن در تابستان 1915 در باره انديشه هاي خود با ديويد هيلبرت رياضيدان بحث كرده بود و هيلبرت، مستقل از اينشتاين و چند روز پيش از وي، همين معادلات را يافته بود. با اين همه، همان گونه كه هيلبرت اذعان نموده است، افتخار نظريه جديد از آن اينشتاين بود. انديشه وي، مرتبط ساختن گرانش با خميدگي جا-گاه بود
 نظريه جديد جا-گاه خميده را نسبيت عام ناميدند تا آن را از نظريه اوليه بدون گرانش، كه اكنون نظريه نسبيت خاص خوانده مي شد، متمايز سازند. در سال 1919 كه هيئت اعزامي انگليسي به آفريقاي غربي، در حين خورشیدگرفتگی (كسوف)، جابجايي اندكي را در موضع ستارگان نزديك خورشيد رصد كردند، اين نظريه به طرزي شگفت تأييد شد. همان گونه كه اينشتاين پيشبيني نموده بود، نور اين ستارگان با عبور از كنار خورشيد، خميده مي شد. اين شاهدي است مستقيم بر آن كه فضا و زمان خميده اند، يعني بزرگترين تغييري كه از زماني كه اقليدس  مباني خود را نوشت، در درك ما از عرصه اي كه در آن زندگي مي كنيم، پديد آمده است
 نظريه نسبيت عام اينشتاين، فضا و زمان را از زمينه منفعلي كه رويدادها در آن روي مي دهند به شركت كنندگان فعالي در ديناميك كيهان تبديل نمود. اين، به مشكل بزرگي منتهي شد كه در انتهاي قرن بيستم، هنوز در پيشاني فيزيك قرار دارد. جهان سرشار از ماده است و ماده جا-گاه را چنان خميده مي سازد كه اجسام به سوي يكديگر سقوط مي كنند. اينشتاين دريافت كه معادلات وي براي توصيف جهاني كه در طول زمان تغيير نمي كند، جوابي ندارند. به جاي رها كردن جهان ايستا و جاويد، كه در آن زمان وي و اغلب مردم ديگر بدان باور داشتنـــد، معادلات را با افزودن جمله اي به نام ثابت كيهاني تغيير داد كه فضا را در جهت ديگر چنـــــان خميده مي ساخت كه اجسام از هم دور شوند. اثر رانشي ثابت كيهاني، اثر كششي ماده را خنثي مي نمود و جهاني را ممكن مي ساخت كه تا ابد به جاي خود باقي است
 معلوم شد كه اين يكي از بزرگترين فرصت هاي از دست رفته فيزيك نظري بوده است. اگر اينشتاين به همان معادلات اصلي خود وفادار مانده بود، مي توانست پيش بيني نمايد كه جهان بايد يا در حال انقباض باشد يا در حال انبساط. تا دهه 1920، كه رصدهايي با تلسكوپ 100 اينچي مونت ويلسون انجام گرفت، امكان جهان وابسته به زمان جدي گرفته نشد. اين رصدها نشان دادند هرچه كهكشان ها از ما دورتر باشند، سريعتر دور مي شوند. به عبارت ديگر، جهان در حال انبساط است و فاصله ميان دو كهكشان با گذشت زمان به طرز يكنواخت افزايش مي يابد. اينشتاين، بعدها، ثابت كيهاني را بزرگترين اشتباه عمر خود خواند
 

نسبیت و مکانیک کوانتوم

استیون هاوکینگ می گوید

هر ماده‌اي كه بينديشيم در جهان وجود دارد(مردم، هوا، يخ، ستارگان، گازها، ميكروب‌ها، صفحه مانيتور شما) از اجزاء ساختاري بسيار ريزي به‌نام اتم تشكيل شده اند. مي‌دانيم كه اتم‌ها بنوبه خودشان از موجودات كوچكتري به نام ذرات و يك فضاي خالي بسيار بزرگ(در مقايسه با ابعاد اين ذرات) ساخته شده‌اند. همچنين مي‌دانيم كه برخي از ذرات خود از ذرات ريزتري تشكيل شده‌اند.

ذرات مادي را كه همگي مي‌شناسيم. پروتون‌ها و نوترون‌ها در هسته اتم و الكترون‌ها كه به دور هسته مي‌چرخند. ذرات مادي اتم او به‌نام كلي فرميون‌‌ها مي‌شناسيم

فرميون‌ها يك سيستم پيام‌رساني دارند كه بين آن ذرات رد و بدل شده و به راه‌هاي معيني موجب ايجاد تاثير و در نتيجه تغييراتي در آن‌ها مي‌شود. سيستم پيام‌رساني انسان‌ها را در نظر بگيريد. كبوتر نامه‌بر، پست، تلفن و فكس سرويس‌هاي اين سيستم مي‌تانند ناميده شوند. اما همه انسان‌ها از هر 4 سرويس فوق براي رد و بدل كردن پيام بين همديگر استفاده نمي‌كنند

در مورد ذرات مادي هم سيستم پيام‌رساني وجود دارد كه سرويس‌هاي چهارگانه‌اي دارد. اين سرويس‌ها را نيرو مي‌ناميم. ذراتي وجود دارد كه اين پيام‌ها را بين فرميون‌ها و در برخي موارد حتي بين خود رد و بدل مي‌كنند. اين ذرات پيام‌رسان به‌طور مشخص بوزون

Boson

 ناميده مي‌شوند

پس هر ذره‌اي كه در جهان وجود دارد يا فرميون هست يا بوزون

گفتيم كه سرويس‌هاي پيام‌رسان 4گانه نيرو ناميده مي‌شوند. يكي از اين نيروها گرانش هست. نيروي گرانش را كه ما را روي زمين نگه مي‌دارد، مي‌توانيم مثل پيامي در نظر بگيريم. حامل اين پيام نوعي بوزون هست كه گراويتون ناميده مي‌شود. گراويتون‌ها حامل پيامي بين ذرات اتم‌هاي بدن ما و ذرات اتم‌هاي زمين هستند و به ذرات مذكور مي‌گويند كه به‌هم نزديك شوند

نيروي دوم يا نيروي الكترومغناطيس پيام‌هايي هست كه به‌وسيله بوزون‌هايي به‌نام فوتون بين پروتون‌هاي درون هسته يك اتم و الكترون‌هاي نزديك به آن، يا بين الكترون‌ها رد و بدل مي‌شوند. اين پيام‌ها موجب مي‌شوند كه الكترون‌ها دور هسته گردش كنند. در مقياس‌هاي بزرگ‌تر از اتم فوتونها خودشان را بصورت نور نشان مي‌دهند. سومين سرويس پيام‌رسان نيروي قوي است كه موجب مي‌شود هسته اتم يكپارچگي خود را حفظ كند و چهارمين سرويس نيروي ضعيف است كه موجب راديواكتيويته مي‌شود

فعاليت اين 4 نيرو باعث رد و بدل شدن پيام بين كليه فرميون‌هاي جهان و برهمكنش بين آنها مي‌شود. بدون اين 4 نيرو هر فرميون اگر هم وجود داشته باشد در جدايي به‌سر مي‌برد، بدون اين كه بتواند با آنها مرتبط شود و بر آنها تاثير بگذارد. بزبان ساده‌تر

اگر چيزي بوسيله اين چهار نيرو روي ندهد، اتفاقي نخواهد افتاد

درك كامل اين چهار نيرو به ما امكان مي‌دهد تا اصولي را كه مبناي همه رويدادهاي جهان هست، درك كنيم

بسياري از كارهاي فيزيك‌دانان قرن بيستم براي آگاهي بيشتر از طرز عمل اين جهار نيروي طبيعي و ارتباط بين آنها انجام شد. در سيستم پيام‌رساني انسان‌ها، ممكن هست به اين موضوع واقف شويم كه تلفن و فكس دو سرويس جداگانه نيستند. بلكه هر دو اجزاي يك سيستم واحدند كه به دو طريق متفاوت جلوه‌گر مي‌شوند. آگاهي از اين واقعيت موجب يگانگي دو سيستم پيام‌رساني خواهد شد. به طريق مشابهي فيزيك‌دان‌ها تا حدودي با موفقيت سعي كردند نوعي يگانگي بين نيروها را استنباط كنند. آنها اميدوار بودند نظريه‌اي بيابند كه در غايت امر هر چهار نيرو را بوسيله يك ابرنيرو توجيه كند. نيرويي كه خودش را به‌گونه‌هاي مختلف نشان مي‌دهد و نيز موجب يگانگي فرميون‌ها و بوزون‌ها در يك خانواده مي‌شود. فيزيك‌دان‌ها اين نظريه را نظريه يگانگي نام دادند. اين نظريه بايد دنيا را توجيه كند. يعني نظريه همه چيز بايد يك قدم پيش‌تر برود و به اين سوال پاسخ دهد: دنيا در لحظه آغاز قبل از اين كه زماني بگذرد، چگونه بوده است؟

فيزيك‌دان‌ها همين سوال را بزبان خودشان با اين عبارت بيان مي‌كنند كه: شرايط اوليه يا شرايط مرزي در آغاز جهان چه بوده است؟

درك كامل ابرنيرو ممكن هست كه درك شرايط مرزي را هم براي ما امكان‌پذير كند. از طرف ديگر ممكن است كه ضروري باشد كه ما شرايط مرزي را بدانيم تا بتوانيم ابرنيرو را بفهميم. اين دو بطور تنگاتنگي با يكديگر ارتباط دارند و نظريه پردازان هم از هر دو طرف مشغول كار هستند تا به «نظريه همه‌چيز» ( از منشا آلماني

Weltformel

  دست پيدا كنند
 

نظريه‌ها

نظريه نسبيت عام اينشتين نظريه‌اي در باره جرم‌هاي آسماني بزرگ مثل ستارگان، سيارات و كهكشان‌هاست كه براي توضيح گرانش در اين سطوح بسيار خوب است

مكانيك كوانتومي نظريه‌اي است كه نيروهاي طبيعت را مانند پيام‌هايي مي‌داند كه بين فرميون‌ها(ذرات ماده) رد و بدل مي‌شوند. اين نظريه اصل نااميدكننده‌اي را نيز كه اصل عدم قطعيت نام دارد در بر مي‌گيرد. بنابر اين اصل هيچ‌گاه ما نمي‌توانيم همزمان مكان و سرعت(تندي و جهت حركت) يك ذره را با دقت بدانيم. با وجود اين مسئله مكانيك كوانتومي در توضيح اشياء، در سطوح بسيار ريز خيلي موفق بوده بوده است

يك راه براي تركيب اين دو نظريه بزرگ قرن بيستم در يك نظريه واحد آن است كه گرانش را همانطور كه در مورد نيروهاي ديگر با موفقيت به آن عمل مي‌كنيم، مانند پيام ذرات در نظر بگيريم. يك راه ديگر بازنگري نظريه نسبيت عام اينشتين در پرتو نظريه عدم قطعيت است

اما اگر نيروي گرانش را مانند پيام بين ذرات در نظر بگيريم، با مشكلاتي مواجه مي‌شويم. قبلاْ ديديم كه شما مي‌توانيد نيرويي كه شما را روي زمين نگه مي‌دارد، مثل تبادل گراويتون‌ها(همان پيام‌رسان‌هاي گرانش) بين ذرات بدن خود و ذراتي كه كره زمين را تشكيل مي‌دهند، در نظر بگيريد. در اينصورت نيروي گرانشي با روش مكانيك كوانتومي بيان مي‌شود. اما چون همه گراويتونها بين خود نيز رد و بدل مي‌شوند، حل اين مساله از نظر رياضي بسيار بغرنج مي‌شود. بي‌نهايت‌هايي حاصل مي‌شوند كه خارج از مفهوم رياضي معنايي ندارند. نظريه‌هاي علم فيزيك واقعاْ نمي‌توانند با اين بي‌نهايت‌ها سر و كار داشته باشند. آن‌ها اگر در نظريه‌هاي ديگر يافت شوند، تئوريسين‌ها به روشي كه آن را ریترماليزيشن يا بازبهنجارش مي‌نامند، متوسل مي‌شوند. ريچارد فاينمن در اين باره مي‌گويد: اين كلمه هر چقدر زيركانه باشد، باز من آن را يك روش ديوانه‌وار مي‌نامم. خود او هنگامي كه روي نظريه‌اش در مورد نيروي الكترومغناطيسي كار مي‌كرد، از اين روش سود جست. اما او به اين كار زياد راغب نبود. در اين روش از بي‌نهايت‌هاي ديگري براي خنثي كردن بي‌نهايت‌هاي نخستين، استفاده مي‌شود. نفس اين عمل اگر چه مشكوك است ولي نتيجه در بسياري از موارد كاربرد خوبي دارد. نظريه‌هايي كه با به‌كارگيري اين روش به‌دست مي‌آيند، خيلي خوب با مشاهدات همخواني دارند

استفاده از روش بازبهنجارش در مورد نيروي الكترومغناطيسي كارساز است ولي در مورد گرانش اين روش موفق نبوده. بي‌نهايت‌ها در مورد نيروي گرانش از جهتي بدتر از بي‌نهايت‌هاي نيروي الكترومغناطيسي هستند و حذفشان ممكن نيست. ابرگرانش كه هاوكينگ در خطابه لوكاشين خود
بدان اشاره كرد و نظريه ابرريسمان كه در آن اشياء بنيادي جهان، بصورت ريسمان‌هاي نازكي هستند، پيشرفت‌هاي اميدوار كننده‌اي داشته‌اند، اما هنوز مسئله حل نشده است


راه ديگر

از طرف ديگر اگر ما مكانيك كوانتومي را براي مطالعه اجسام بسيار بزرگ در قلمرويي كه گرانش فرمانرواي بي‌چون و چرا است، بكار گيريم، چه خواهد شد؟ به‌ديگر سخن اگر ما آنچه را كه نظريه نسبيت عام در باره گرانش مي‌گويد، در پرتو اصل عدم قطعيت بازنگري كنيم، چه اتفاقي خواهد افتاد؟

همانطور كه گفتيم طبق اصل عدم قطعيت

(Uncertainty principle)

 نمي‌توان با دقت مكان و سرعت يك ذره را همزمان اندازه گرفت. آيا اين بازنگري موجب تفاوت زيادي خواهد شد؟ در ادامه خواهيم ديد كه استفن‌هاوكينگ در اين زمينه به چه نتايج شگرفي دست يافته است

نظريه نسبيت عام همچنين به مـــا مي‌گويد كـــه وجود ماده يـــا انرژي سبب خميدگي يــا تاب‌خوردن فضا-زمان مي‌شود. يك نمونه خميدگي آشنا مي‌شناسيم. خميدگي باريكه‌هاي نور ستارگان دور هنگامي كه از نزديكي اجسام با جرم بزرگ نظير خورشيد مي‌گذرند

اين دو موضوع را به‌ياد داشته باشيم
 

یک - فضاي «خالي» از ذرات و پادذرات پر شده است. جمع كل انرژي آن‌ها مقداري عظيم يا مقداري بي‌نهايت از انرژي است

 دو - وجود اين انرژي باعث خميدگي فضا-زمان مي‌شود

تركيب اين دو ايده ما را به اين نتيجه مي‌رساند كه كل جهان مي‌بايستي در يك توپ كوچك پيچيده شده باشد. چنين چيزي روي نداده است! بدين‌سان موقعي كه از نظريه‌هاي نسبيت عام و مكانيك كوانتومي توامان استفاده مي‌شود، پيشگويي آن‌ها اشتباه محض است


نسبيت عام و مكانيك كوانتومي هر دو نظريه‌هاي فوق‌العاده خوب و از موفق‌ترين دستاوردهاي فيزيك در قرن گذشته هستند. از اين دو نظريه نه‌تنها براي هدف‌هاي نظري بلكه براي بسياري كاربردهاي عملي، به‌نحوي درخشان استفاده مي‌شود. با وجود اين اگر آن‌ها را با هم در نظر بگيريم، نتيجه همانطور كه ديديم بي‌نهايت‌ها و بي‌معني بودن است

 

 


This site is © Copyright CPH 2004-2005, All Rights Reserved.

Powered  by M.H. Dalvand